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Deep learning enables de novo peptide
sequencing from data-independent-acquisition

mass spectrometry

NgocHieuTran
AliGhodsi? and MingLi®™

We present DeepNovo-DIA, a de novo peptide-sequencing
method for data-independent acquisition (DIA) mass spec-
trometry data. We use neural networks to capture precur-
sor and fragment ions across m/z, retention-time, and
intensity dimensions. They are then further integrated with
peptide sequence patterns to address the problem of highly
multiplexed spectra. DIA coupled with de novo sequencing
allowed us to identify novel peptides in human antibodies
and antigens.

Personalized immunotherapy is revolutionizing cancer treat-
ment'~*. However, challenges remain in identifying and validat-
ing neoantigens that can elicit effective antitumor T cell responses
in each individual. The current process of exome sequencing,
somatic-mutation calling, and prediction of major-histocompat-
ibility-complex binding is a long and unreliable detour for the
identification of neoantigens brought to the cancer-cell surface™*.
This process can be complemented and validated by mass spec-
trometry (MS) technology’~. In addition to the need for sufficient
tumor samples for MS analysis, the following two requirements
must be addressed: (i) sufficient sensitivity to detect low-abun-
dance peptides and (ii) the capability to discover novel sequences
that do not exist in any database.

Recent advances in DIA strategies®” allow the fragmentation
of all precursor ions within a certain range of m/z and retention
time in an unbiased and untargeted fashion, in contrast to data-
dependent acquisition (DDA) and selected-reaction monitoring.
DIA experiments produce a complete record of all peptides that
are present in a sample, including those with low abundance. A
remaining question is how to decode these data to extract mean-
ingful information. MS/MS spectra from DIA are notoriously hard
to interpret because they are highly multiplexed. Each spectrum
contains fragment ions from multiple precursor ions, and the
link between a precursor ion and its fragment ions is unknown.
This challenge prevents many DIA database search engines from
achieving identification power comparable to that of their DDA
counterparts’'?. The problem is even more acute for the de novo
sequencing approach, and no method has been proposed to
address it. Indeed, the complexity of dynamic programming or
graph-based algorithms in most de novo sequencing methods for
DDA may increase exponentially with the multiplexity of MS/MS
spectra from DIA. Thus, a new viable solution is needed for de
novo sequencing using DIA data.

1, RuiQiao?, Lei Xin3, Xin Chen?, ChuyilLiu*, XianglilanZhang®, Baozhen Shan?,

We recently described DeepNovo'!, a deep-learning-based
model for de novo sequencing using DDA data. The key idea is the
application of neural networks to better learn features of fragment
ions and peptide sequences. We have observed that, in contrast to
many complicated optimization algorithms, the iterative sequenc-
ing framework of DeepNovo makes it possible to extend to DIA
without any increase in complexity. More important, to address the
problem of highly multiplexed spectra, we restructure the neural
networks to utilize the extra dimensionality of DIA data (m/z and
retention time) to identify coeluting patterns of a precursor ion and
its fragment ions, as well as fragment ions across multiple neighbor
spectra. This evidence allows DeepNovo-DIA to pick up the cor-
rect signal for de novo sequencing amid a large amount of noise
in a DIA spectrum. Taking all these considerations into account,
we redesigned DeepNovo-DIA to enable de novo sequencing using
DIA data.

Figure 1 presents our de novo sequencing workflow. First, pre-
cursor features are detected together with their m/z, charge, reten-
tion time, and intensity profile from the LC-MS map' Next, for
each precursor, we collect all MS/MS spectra so that they are within
the precursor’s retention-time range, and ensure that their DIA m/z
windows cover the precursor’s m/z. Because the number of spectra
collected for a precursor may vary, we select a fixed number of spec-
tra that are closest to the center of the precursor’s retention time.
The closer a spectrum is to the center, the stronger its fragment ion
signals are for de novo sequencing. The correlation between the pre-
cursor’s intensity profile and its fragment ions is also a good indi-
cator for de novo sequencing. Thus, we feed the precursor and its
associated MS/MS spectra into DeepNovo-DIA neural networks to
learn (i) the 3D shapes of fragment ions along m/z and retention-
time dimensions, (ii) the correlation between the precursor and its
fragment ions, and (iii) the peptide sequence patterns. Our de novo
sequencing framework operates in a recurrent and beam-search
fashion: at each iteration, the model predicts the next amino acid
by conditioning on the output of previous steps and keeps track of
only a constant number of top candidate sequences. As a result, its
complexity does not increase with the number of peptides or with
the number of ions in the spectrum. Finally, de novo peptides can be
validated through an augmented database search with a controlled
false discovery rate (FDR) to ensure that they are supported by sig-
nificant peptide-spectrum matches. More details can be found in
the Methods.
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Fig. 1| The workflow of DeepNovo-DIA for de novo sequencing of DIA data. Precursor ion features are detected together with their m/z, charge, retention
time, and intensity profile from the LC-MS map. The MS/MS spectra associated with each precursor (i.e., within its retention-time and m/z range) are
aligned along the retention-time and m/z dimensions and then fed to the neural networks. lon-CNN and spectrum-CNN learn the 3D shapes of fragment
ions and the correlation between the precursor and its fragment ions. The long-short-term memory (LSTM) network learns peptide sequence patterns in
association with spectrum-CNN. DeepNovo-DIA conducts de novo sequencing in a recurrent fashion, predicting the next amino acid by conditioning on

the output of previous steps.

We trained DeepNovo-DIA on a previously obtained dataset
of urine samples from 64 subjects’’. We evaluated DeepNovo-DIA
on two other datasets from different subjects who had been diag-
nosed with ovarian cyst (OC; six subjects) or urinary tract infection
(UTI; six subjects). We also tested DeepNovo-DIA on a previously
obtained dataset of plasma samples'®. The test datasets were not
used during model development.

We built an in-house database search tool to generate training
data. In particular, we followed the approach of DIA-Umpire’ to
generate a pseudo-spectrum from each precursor feature and its
associated spectra. Then we used a conventional DDA database
search tool, PEAKS DB, to search the pseudo-spectra against the
Swiss-Prot human database. The peptides identified at 1% FDR
were assigned to the corresponding precursors and were used as
ground-truth labels for training. Our training set included 2,177,667
spectra, 202,114 labeled precursor features, and 14,400 unique
peptides (Supplementary Table 1). For evaluation, we compared
DeepNovo-DIA to DIA database search tools including PECAN™,
Spectronaut', and OpenSWATH’. Such comparisons illustrate
(i) the accuracy of de novo sequencing (based on overlapping iden-
tifications) and (ii) DeepNovo-DIA’s identification of new peptides
not found in the database.

We first calculated the accuracy of DeepNovo-DIA using labeled
features from the in-house database search. For each labeled fea-
ture, we compared the de novo peptide predicted by DeepNovo-
DIA with the ground-truth sequence on the basis of the alignment
of their mass fragments''. We measured the sequencing accuracy at
the amino acid level (i.e., the ratio of the total number of matched

64

amino acids to the total length of predicted peptides) and at the pep-
tide level (i.e., the fraction of fully matched peptides). As shown in
Fig. 2a, DeepNovo-DIA accurately predicted 63.8-68.1% of amino
acids and 37.4-52.4% of peptides of the labeled features. Moreover,
DeepNovo-DIA provides a confidence score for each predicted
amino acid. Figure 2b shows the distribution of sequencing accu-
racy with respect to confidence score that allows one to select high-
confidence de novo peptides with a certain expected accuracy.

We then applied DeepNovo-DIA to all features, labeled and unla-
beled, and used the confidence-score distribution in Fig. 2b to select
high-confidence predicted peptides with an expected sequencing
accuracy of 90%. Figure 2c shows the substantial overlap of precur-
sor features with peptide identifications by the database search and
DeepNovo-DIA. The amino acid accuracy of overlapping features
was close to 90%, as expected (Fig. 2d), thus demonstrating the reli-
ability of the DeepNovo-DIA confidence score for quality control.
More important, DeepNovo-DIA identified peptides for 33-72.6%
of extra features (e.g., plasma dataset 33% =2,529/(4,207 + 3,466)).
We also observed that DeepNovo-DIA’s performance was better for
the UTI and OC datasets than for the plasma dataset; we suggest
that this is because the UTT and OC datasets were more similar to
the training data.

Next, we compared DeepNovo-DIA to PECAN and Spectronaut,
using the plasma dataset (Supplementary Note 1, Supplementary
Figs. 1-5, Supplementary Table 2). DeepNovo-DIA correctly pre-
dicted the full sequences of 1,023 database peptides that were
reported by PECAN or Spectronaut (Fig. 2e). Among 2,091 pep-
tides reported by both PECAN and Spectronaut, which can be
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Fig. 2 | DeepNovo-DIA evaluation of three datasets: ovarian cyst (OC), urinary tract infection (UTI), and plasma. a, Accuracy of DeepNovo-DIA on
labeled features. b, Distribution of DeepNovo-DIA accuracy and confidence scores. ¢, Precursor features with peptide identifications by in-house database
search or DeepNovo-DIA. d, DeepNovo-DIA accuracy on overlapping features in Fig. 1c. e, Comparison of unique peptides identified by DeepNovo-DIA,
PECAN, and Spectronaut from the plasma dataset. f, Abundance distributions of 1,143 de novo peptides identified by DeepNovo-DIA and 1,023 database
peptides identified by DeepNovo-DIA and PECAN or Spectronaut. g-i, Examples of a DIA spectrum that contains three different peptides, all of which
were predicted by DeepNovo-DIA. In each panel, the fragment ions supporting the corresponding peptide are highlighted (red, y ion; blue, b ion).

considered as high-quality database search results, DeepNovo-DIA
identified 778 (37.2%). This is comparable to the performance of de
novo sequencing tools for DDA data (25-40% at the peptide level").
Among peptides reported only by DeepNovo-DIA, 587 could be
found in the database and 2,011 were de novo. To ensure that the
de novo peptides were supported by significant peptide-spectrum
matches, we augmented the database FASTA file with the de novo
peptides and re-ran the in-house database search. We found that
1,143 de novo peptides passed 1% FDR after the search was re-
run. Thus, 1,730 peptides were identified only by DeepNovo-DIA
(587 +1,143=1,730).

Figure 2f shows the abundance distribution of 1,143 de novo
peptides compared with that of 1,023 database peptides identi-
fied by DeepNovo-DIA and PECAN or Spectronaut. The abun-
dance of de novo peptides ranged from 10° to 10", demonstrating
that DeepNovo-DIA scales across multiple levels of abundance.
The distribution of de novo peptides showed a shift toward lower
abundance compared with that of database peptides. For instance,
270/1,143 (23.6%) de novo peptides had an abundance of <109,
compared with 69/1,023 (6.7%) database peptides. Supplementary
Data 1-3 show several examples of low-abundance de novo pep-
tides with supporting peptide-spectrum matches and coelution
profiles of precursor and fragment ions.

Next, we ran BLAST on those 1,143 de novo peptides against
the broad NCBI human nonredundant protein database to find
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supporting evidence from previous studies. We found 463 peptide
matches with more than 90% identity, and 123 with 100% identity.
We found 113 peptides in the variable regions of immunoglobulin
light and heavy chains (Supplementary Tables 3 and 4), and 6 pep-
tides with human natural variants (Supplementary Table 5). Note
that such variable peptides change from one individual to another
and cannot be found via the standard database-search approach.
Supplementary Fig. 6 shows an example of three de novo peptides
aligned to the variable region of a recently published human anti-
body for malaria vaccine design'®.

We also applied DeepNovo-DIA to identify novel peptides
from data on human leukocyte antigen'® (Supplementary Note 2,
Supplementary Table 6, Supplementary Data 4). Supplementary
Figs. 7 and 8 show the results of DeepNovo-DIA, OpenSWATH,
and Spectronaut on the Jurkat-Oxford dataset'®. DeepNovo-DIA
correctly predicted the full sequences of 102 database peptides that
were reported by OpenSWATH or Spectronaut. Of 106 peptides
reported by both OpenSWATH and Spectronaut, DeepNovo-DIA
identified 35 (33.0%). Of 202 peptides reported only by DeepNovo-
DIA, 72 were found in the database, and the remaining 130 were de
novo peptides.

Finally, we show an example of DeepNovo-DIAs applica-
tion to a DIA spectrum from the plasma dataset that contained
mixed fragment ions from three different peptides (Fig. 2g-i).
DeepNovo-DIA was able to identify all of them. The last two peptides

65


http://www.nature.com/naturemethods

BRIEF COMMUNICATION

NATURE METHODS

were predicted by both DeepNovo-DIA and the database search;
however, the first one did not exist in the database. Thus, the com-
bination of DIA and de novo sequencing has the potential to help
scientists discover novel peptides and enable more complete profil-
ing of biological samples.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
$41592-018-0260-3.
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Methods

DeepNovo-DIA model. Data preprocessing. Because a DIA spectrum is highly
multiplexed, it is important to use high resolution to distinguish fragment ions
from different precursors that happen to have similar masses. In this study, we
used 50 bins to represent 1.0 Da, that is, a resolution of 0.02 Da. We also defined

a maximum mass value of 3,000.0 Da. Thus, each spectrum was represented by

a vector of size 150,000, in which the mass of an ion corresponded to an index
and the ion intensity was the vector value at that index. For the retention-time
dimension, we fixed this number and selected those spectra closest to the feature’s
retention-time mean. If there were not enough spectra, we appended zeros. In this
study, we used five spectra (the use of ten spectra led to minor improvements). We
stacked the spectra along the retention-time dimension so that the middle one was
the closest to the feature’s retention-time mean (Fig. 1).

The five selected MS/MS spectra of a feature were stored in a matrix of size
5x%150,000. To normalize the intensities, we divided the matrix element-wise by
its maximum. We also extracted the MS1 intensity profile of a given feature at the
respective retention times of those five MS/MS spectra. The resulting normalized
5x 150,000 matrix together with the length-5 MS1 intensity profile vector were
then fed to the DeepNovo-DIA model for de novo sequencing.

De novo sequencing framework. In general, the de novo sequencing framework

is the same for DDA and DIA data, except that extra preprocessing is needed to
add the retention-time dimension of DIA data. The framework is illustrated in
Supplementary Fig. 9. The framework operates in a recurrent and beam-search
fashion: at each iteration, the model predicts the next amino acid by conditioning
on the output of previous steps and keeps track of only the top five candidate
sequences. For each iteration, the input is a prefix, that is, a sequence including

a ‘start’ symbol and the amino acids that have been predicted up to the current
iteration. The output is a probability distribution over 26 candidates, including
20 amino acid residues, their modifications (oxidation (M) and deamidation
(NQ)), and three special symbols (‘start, ‘end; and ‘padding’). Similarly to the use
of DeepNovo on DDA data'’, we used the knapsack search algorithm to limit our
search space.

Given the input prefix, DeepNovo-DIA calculates the probability of the next
amino acid on the basis of information extracted from two separate branches. In
the first branch, called ion-CNN (Supplementary Fig. 10), DeepNovo-DIA first
computes the prefix mass, that is, the total mass of the N-terminal and amino
acids in the prefix. Next, DeepNovo-DIA tries to add each amino acid type to
the current prefix and updates its mass accordingly. For each resulting candidate
sequence, the corresponding masses of b ions and y ions are calculated. In the
current implementation, we use eight ion types: b, y, b(2+), y(2+4), b-H20, y-H20,
b-NH3, and y-NH3. Given an ion mass, DeepNovo-DIA identifies its location on
the intensity vector of feature-associated spectra. DeepNovo-DIA then extracts an
intensity window of size 10 around the ion location. Thus, for each input prefix,
DeepNovo-DIA computes a four-dimensional array of shapes (26, 8, 5, 10) and
feeds it to ion-CNN together with the MS1 intensity profile, a vector of length 5.
Ton-CNN then encodes the inputs into a vector h,,, of length 512+ 26. The
structure of ion-CNN is explained in Supplementary Fig. 10 and in the following
section.

The second branch, spectrum-CNN coupled with long-short-term memory
(LSTM) (Supplementary Fig. 11), is designed to learn amino acid patterns of the
peptide in association with the feature’s spectra. In this branch, we directly feed
the 5% 150,000 normalized feature matrix into spectrum-CNN, and then use the
output as the initial input to LSTM. At each step, LSTM takes the embedding
vector of current amino acid as input. LSTM then outputs a vector h,,, based on
the input and the current hidden state, which contains information about the
previous amino acids that it has seen. The structure of spectrum-CNN is explained
in Supplementary Fig. 11 and in a later section.

Finally, DeepNovo-DIA concatenates (%, hig,) together and feeds the result
to a softmax layer with 26 neurons. The output is interpreted as a probability
distribution on the 26 possible candidates of amino acids and tokens. The whole
DeepNovo-DIA model is illustrated in Supplementary Fig. 9.

Ion-CNN. The role of ion-CNN is to learn (i) 3D shapes along m/z and retention-
time dimensions of fragment ions and (ii) correlation between the precursor

and its fragment ions (Fig. 1). The first input to ion-CNN is a five-dimensional
fragment-ion intensity array of shape (128, 26, 8, 5, 10), where

o the first dimension is the batch size,

o the second dimension is the number of amino acids,

o the third dimension is the number of ion types,

« the fourth dimension is the number of associated spectra, and
« the fifth dimension is the model’s window size.

Thus, for DIA data, we have the extra dimensionality of retention time where
multiple associated spectra can be used to predict the peptide sequence of the
feature. Moreover, the second input to ion-CNN, a two-dimensional array of shape
(128, 5), is the MS1 intensity profile of the feature over its retention-time period.

Theoretically, all the true fragment ions of the feature should be correlated to
the feature and to each other. The fragment ions should form 3D shapes along the
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m/z and retention-time dimensions (Fig. 1). We use three convolutional layers
followed by one max pooling layer and one fully connected layer to learn those
patterns (Supplementary Fig. 10). For each layer, we choose RELU as the activation
function. Eventually, the fully connected layer outputs a matrix of shape (128, 512).
To let the model use information of the correlation between the fragment ions and
the feature, we also calculate the Pearson correlation between the feature and its
fragment ions and concatenate that indicator with the output of the fully connected
layer. In particular, for each five-dimensional fragment ion intensity array I, we
define I;,,, as the sum over the third and fifth dimensions. Thus, I, is a tensor of
shape (128, 26, 5). Then, we repeat the MS1 intensity profile matrix 26 times and
stack the results to get I, with size (128, 26, 5). Finally, we compute the correlation
between I;,, and I, along their third axis. The resulting correlation tensor, with
shape (128, 26), is then concatenated with the output of the fully connected
layer. Our experiment showed that when the correlation feature was included,
DeepNovo-DIAs amino acid accuracy improved by 5.4%. In addition, it was easier
to get overfitting with DIA data than with DDA data. We use dropout layers after
the final convolutional layer and the fully connected layer.

Compared with the DDA data, we found that more convolutional
layers yielded better performance for DIA data. We also found that max pooling
was very important to account for shift invariance, especially along the
retention-time dimension.

Spectrum-CNN and LSTM. The model of spectrum-CNN coupled with LSTM

is designed to learn amino acid sequence patterns of the peptide in association
with the feature’s spectra. We use spectrum-CNN to encode the intensity vector
of the spectra and LSTM to decode the amino acids. This is similar to the idea of
automatically generating a description for an image, where a convolutional neural
network is used to encode, or ‘understand;, the image and a recurrent neural
network is used to decode, or ‘describe; the content of the image. The input to
spectrum-CNN is a four-dimensional tensor of shape (128, 5, 150,000, 1) that is a
batch of normalized feature matrices. Spectrum-CNN consists of one max pooling
layer, two convolution layers, and one fully connected layer (Supplementary Fig. 11).
It encodes the input into an array h,; of size (128, 512). Then, DeepNovo-DIA
initializes the LSTM module with zero states and feeds h;,; to LSTM to ‘warm up’
its hidden state (Supplementary Fig. 9).

Focal loss function. Previously in a DeepNovo model for DDA, we used cross-
entropy loss as the loss function. For DIA, the presence of multiple peptides
in the same spectrum inspired us to view de novo sequencing as a multi-label
classification problem with dense signals, and hence to apply focal loss'” as the
suitable objective function for DIA. Our experiment shows that the switch to focal
loss improved DeepNovo-DIAs performance considerably.

Lin et al. proposed focal loss to solve the class-imbalance issue in object
detection'. The focal loss down-weights the contribution of easy predictions
and puts more focus on hard predictions, and therefore could help to address
the problems of noisy targets and class imbalance. In object-detection problems,
the neural networks need to classify whether a patch of an image is an object or
background. Because of the nature of this problem, most patches neural networks
can see are background, and this causes problems for end-to-end training with
cross-entropy loss. To deal with this problem, Lin et al. proposed a dynamically
scaled cross-entropy loss that they named focal loss. For a binary classification
problem, we denote y € {0,1} as the ground-truth class for a data point, and p as
the model’s predicted probability for class 1. Then the focal loss is defined by the
following formula:

Focal loss = —(1-p,)"log(p,)

where p,=p if yis class 1 and p,=1 - p if y is class 0, and where y is a
hyperparameter greater than 1.

From the definition, we can see that, compared with cross-entropy loss, focal
loss scales down the loss by a factor of (1 - p,)”. This means that focal loss down-
weights the contribution of easy examples (where 1 - p, is small), and the model is
likely to focus more on hard examples.

In our case, we found that the DeepNovo-DIA model also had a class-
imbalance problem, as the frequency for amino acids varies a lot. Therefore, we
suspected that focal loss could help us to better train the DeepNovo-DIA model.
During training, we changed the activation function of the last layer from a
softmax function to a sigmoid function, which led the model to give a probability
between 0 and 1 for each of the 26 classes (note that here the sum of these 26
probabilities might not amount to 1). Then, for each class we computed the
focal loss using the formula above, and used the average of those 26 losses
as the final loss. At inference time, we switched the activation function back
to softmax because we found that this led to better performance. Overall, our
experiments show that the focal loss improved the amino acid accuracy by
20% on the plasma dataset.

Model training. We trained DeepNovo-DIA on a previously published'’ DIA dataset
of urine samples from 64 subjects. The training dataset included 2,177,667 spectra,
202,114 labeled features, and 14,400 unique peptides (Supplementary Table 1).
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We divided the data into three sets—training, validation, and testing—with ratios
of 90%, 5%, and 5%, respectively. For de novo sequencing purposes, we made

sure that the training, validation, and testing sets did not share common peptides.
During the training process, we used ‘early stopping’—that is, we periodically
evaluated the model and saved it only if there was improvement on the validation
set. We found that DIA data were overfitted more easily than DDA data were, and
usually the training process stopped after about five epochs. To train the model,
we used the Adam optimizer with the default hyperparameters § =0.9, 5, =0.999
and a fixed learning rate of 0.001. To prevent the gradient exploding problem, we
clipped the gradient so that the global L2 norm of the gradient tensor was <5.

Data analysis. The lists of precursor features, DIA spectra, and de novo predictions
that we used for data analysis have been uploaded to the MassIVE repository under
accession number MSV000082368. Readers can re-run the de novo sequencing
process from the given feature lists and spectra, or from the raw files (see
instructions on GitHub or in the Supplementary Protocol). The raw files can be
downloaded from the original publications (refs. '*'°). In the following subsections,
we explain how we analyzed the de novo predictions and obtained the results in
our paper.

Precursor feature detection. For precursor feature detection from LC-MS maps, we
used an existing peak caller from ref. '°. Other peak callers, such as MaxQuant'%,
can also be used in this role. The output of this step is a list of precursor features,
each of which should include the following information: feature ID, m/z, charge,
abundance level (area), retention-time center, and intensity values over the
retention-time range. Moreover, given the m/z and retention-time range of a
feature, we collected all MS/MS spectra so that they were within the feature’s
retention-time range, and their DIA m/z windows had to cover the feature’s m/z.
For example, the CSV file “testing_plasma.unlabeled.csv” in the testing data (folder
“plasma”) shows all precursor features that we detected from the plasma dataset.
The file’s columns include the following information:

o “spec_group, the feature ID; “F1:6427” means feature number 6,427 of frac-
tion 1

«  mlz, the mass-to-charge ratio

oz, the charge

o “rt_mean,” the mean of the retention-time range

o “seq”: the column is empty during de novo sequencing. In training mode, it
contains the peptides identified by the in-house database search for training.

o “scans,” alist of all MS/MS spectra collected for the feature as described above.
The spectra’s IDs are separated by a semicolon; “F1:101” indicates scan num-
ber 101 of fraction 1. The spectra’s IDs can be used to locate the spectra in the
MGEF file “testing_plasma.spectrum.mgf””

o “profile;” the intensity values over the retention-time range; the values are
“time:intensity” pairs and are separated by semicolons; the time points align to
the time of spectra in the column “scans”

o “feature_area,” the precursor feature area estimated by the feature detection

In-house database searching. To generate the training data for DeepNovo-DIA, we
built an in-house database search tool for DIA data. We used an approach similar
to DIA-Umpire’. First, from each precursor feature and its associated MS/MS
spectra, we generated a pseudo-spectrum. In particular, we calculated the Pearson
correlation coefficient between the LC eluting profiles of the precursor and MS/MS
fragment ions. Then, we selected fragment ions with Pearson correlation
coefficients greater than 0.6 and used up to 500 of the most correlated ones to form
the pseudo-spectrum.

The pseudo-spectra and corresponding precursor information such as m/z
and charge were then searched against the Swiss-Prot human database. This step
can be done with any conventional DDA database search engine; here we used
PEAKS DB'”. We used common parameter settings such as trypsin digestion, fixed
modification C (carbamidomethylation), precursor mass tolerance 30 p.p.m., and
fragment mass tolerance 0.02 Da for the plasma dataset. For human leukocyte
antigen (HLA) datasets, we used non-enzyme digestion, no modification,
20 p.p.m., and 0.05 Da. The peptides identified at a 1% FDR cutoff were then
assigned to the corresponding precursor features and were used as labels
for training. For example, the CSV file “testing_plasma.feature.csv” in the testing
data (folder “plasma”) shows all labeled features identified from the plasma dataset.
The database FASTA file is included in the Supplementary Software.

Post-processing analysis. For each labeled feature, the de novo peptide predicted

by DeepNovo-DIA was compared to the ground-truth sequence identified by the
database search. A simple way to do this is on the basis of exact sequence matching.
However, it is very common for de novo peptides to have one or two sequencing
errors such as swapping, or different amino acid combinations with the same mass.
Hence, we calculated sequencing accuracy on the basis of the alignment of the
mass fragments''. We measured the sequencing accuracy at the amino acid level,
that is, the ratio of the total number of matched amino acids to the total length of

predicted peptides, and at the peptide level, that is, the fraction of fully
matched peptides.

We provide a script in the Supplementary Software to calculate DeepNovo-DIA
accuracy (“deepnovo_dia_script_test.py”). The script compares the file of labeled
features (e.g., “testing_plasma.feature.csv”) and the output file from DeepNovo-
DIA (e.g., “testing_plasma.unlabeled.csv.deepnovo_denovo”). It searches for
overlapping features and calculates accuracy on those features. The results are
printed out to the file “testing_plasma.unlabeled.csv.deepnovo_denovo.accuracy”
The script can be used to reproduce the results in Fig. 2a—d.

The confidence score of a peptide sequence is the sum of its amino acids’
scores. The score of each amino acid is the log of the output probability
distribution—that is, the final softmax layer of the neural network model—at each
sequencing iteration. The score was trained using only the training dataset. When
applying the process to a new specific dataset, one might want to select a cutoff
to filter the de novo results of that dataset. This is similar to the case of a database
search: when a 1% FDR is set, the cutoff score changes from one dataset to another.
However, there is no such target-decoy method to estimate FDR for de novo
sequencing. Hence, we compared database-search and de novo results
on the basis of their overlapping features, calculated de novo accuracy, and plotted
the distribution of de novo confidence scores with respect to de novo accuracy
(Fig. 2b). Then, from the distribution, we selected a cutoff for the de novo
confidence score so that the de novo accuracy was 90% at the amino acid
level on the overlapping features. Finally, we applied that cutoff to
de novo results for all features.

We provide a script in the Supplementary Software to filter high-confidence
predictions from DeepNovo-DIA (“deepnovo_dia_script_select.py”). The script
was used to filter the DeepNovo-DIA high-confidence results that we have
described in this paper. The results are printed out to the file “testing_plasma.
unlabeled.csv.deepnovo_denovo.top90.”

The selection of high-confidence de novo predictions does not provide a
way to control the FDR. Thus, de novo peptides can be validated by means of
the following approach. We augmented the original database FASTA file with
the de novo peptides identified by DeepNovo-DIA. Then, we re-ran the database
search using the new FASTA file; other parameters remained unchanged. Finally,
we selected only de novo peptides that passed 1% FDR after the search had
been re-run. We performed this analysis with our in-house database search and
Spectronaut. We found that about 56.8% (1,143/2,011=56.8%) of de novo peptides
passed 1% FDR for the plasma dataset (Supplementary Note 1). Such peptides
should be supported by significant peptide—spectrum matches and coelution
profiles between precursors and fragment ions.

Validation of de novo results with PECAN, OpenSWATH, and Spectronaut.
We used three different database search tools to validate the de novo results of
DeepNovo-DIA.

For the plasma dataset, we compared DeepNovo-DIA to PECAN and
Spectronaut. PECAN results were downloaded from the original publication'.
We ran Spectronaut using their directDIA workflow with trypsin digestion,
fixed modification C (carbamidomethylation), and 1% FDR; other parameters
were defaults.

For the HLA datasets, we compared DeepNovo-DIA to OpenSWATH
and Spectronaut. OpenSWATH results were downloaded from the original
publication'®. We calculated and filtered peptides at 1% FDR from their results,
and used those peptides for comparison. We ran Spectronaut with the directDIA
workflow with non-enzyme digestion and 1% FDR; other parameters were defaults.

We compared DeepNovo-DIA to PECAN, OpenSWATH, and Spectronaut
on the basis of unique peptides. For such a comparison, DeepNovo-DIA had to
accurately predict the full sequence of a peptide in order for it to be considered
amatch.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Software availability. DeepNovo-DIA is implemented in Python, using the
TensorFlow library for neural networks. The software and documentation are
provided in the Supplementary Software and the Supplementary Protocol, as well
as on GitHub (https://github.com/nh2tran/DeepNovo-DIA).

Data availability

Data and a pretrained model are publicly available in the MassIVE repository
under accession number MSV000082368. Source data for Fig. 2 are available
online.
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Policy information about availability of computer code

Data collection No software was used.

Data analysis DeepNovo is freely available on GitHub: https://github.com/nh2tran/DeepNovo-DIA.
Scripts for data analysis are included in the supplementary materials.
DeepNovo source code can be made available to editors and reviewers upon request.
For PEAKS DB search, we used PEAKS Studio version 8.5.
For Spectronaut, we used version 11.
For BLAST, we used BLASTX on the NCBI web server, version August 2018.
For PECAN and OpenSWATH, we used the results reported in the original studies (references 10 and 16). We did not run the softwares
ourselves.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data is available on MassIVE repository, accession number MSV000082368.
Data can also be downloaded from https://github.com/nh2tran/DeepNovo-DIA.
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identifications at 1% False Discovery Rate. For training, validation, and testing, we partitioned data according to the ratios 90%, 5%, and 5%,
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Data exclusions  No data were excluded.

Replication The results, including figures and tables, can be reproduced by running the provided software and scripts on the testing datasets.

Randomization  The data were randomly partitioned into training, validation, and testing sets according to the ratios 90%, 5%, and 5%, respectively. The
testing datasets were not used in model development.

Blinding Blinding was not relevant to our study because the data were randomized. The only control was that the testing datasets were not used in
model development so that the model was not biased towards the training data.
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