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De novo peptide sequencing from tandem MS data is the key
technology in proteomics for the characterization of proteins, espe-
cially for new sequences, such as mAbs. In this study, we propose a
deep neural network model, DeepNovo, for de novo peptide sequenc-
ing. DeepNovo architecture combines recent advances in convolutional
neural networks and recurrent neural networks to learn features of
tandem mass spectra, fragment ions, and sequence patterns of pep-
tides. The networks are further integrated with local dynamic pro-
gramming to solve the complex optimization task of de novo
sequencing. We evaluated the method on a wide variety of species
and found that DeepNovo considerably outperformed state of the art
methods, achieving 7.7-22.9% higher accuracy at the amino acid level
and 38.1-64.0% higher accuracy at the peptide level. We further used
DeepNovo to automatically reconstruct the complete sequences of
antibody light and heavy chains of mouse, achieving 97.5-100% cov-
erage and 97.2-99.5% accuracy, without assisting databases. More-
over, DeepNovo is retrainable to adapt to any sources of data and
provides a complete end-to-end training and prediction solution to the
de novo sequencing problem. Not only does our study extend the
deep learning revolution to a new field, but it also shows an innova-
tive approach in solving optimization problems by using deep learning
and dynamic programming.
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roteomics research focuses on large-scale studies to characterize
the proteome, the entire set of proteins, in a living organism (1-
5). In proteomics, de novo peptide sequencing from tandem MS data
plays the key role in the characterization of novel protein sequences.
This field has been actively studied over the past 20 y, and many de
novo sequencing tools have been proposed, such as PepNovo,
PEAKS, NovoHMM, MSNovo, pNovo, UniNovo, and Novor among
others (6-19). The recent “gold rush” into mAbs has undoubtedly
elevated the application of de novo sequencing to a new horizon (20—
23). However, computational challenges still remain, because MS/MS
spectra contain much noise and ambiguity that require rigorous
global optimization with various forms of dynamic programming that
have been developed over the past decade (8-10, 12, 13, 15-19, 24).
In this study, we introduce neural networks and deep learning to
de novo peptide sequencing and achieve major breakthroughs on
this well-studied problem. Deep learning has recently brought about
a revolution in many research fields (25), repeatedly breaking state
of the art records in image processing (26, 27), speech recognition
(28), and natural language processing (29). It now forms the core of
the artificial intelligence platforms of several technology giants, such
as Google, Facebook, and Microsoft, as well as many startups in the
industry. Deep learning has also made its way into biological sci-
ences (30) [for instance, in the field of genomics, where deep neural
network models have been developed for predicting the effects of
noncoding single-nucleotide variants (31), predicting protein DNA
and RNA binding sites (32), protein contact map prediction (33),
and MS imaging (34)]. The key aspect of deep learning is its ability
to learn multiple levels of representation of high-dimensional data
through its many layers of neurons. Furthermore, unlike traditional
machine learning methods, those feature layers are not predesigned
based on domain-specific knowledge, and hence, they have more
flexibility to discover complex structures of the data.
The task of de novo peptide sequencing is to reconstruct the
amino acid sequence of a peptide given an MS/MS spectrum and
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the peptide mass. A spectrum can be represented as a histogram of
intensity vs. mass (more precisely, m/z) of the ions acquired from
the peptide fragmentation inside a mass spectrometer (Fig. 14).
The problem bears some similarity to the recently trending topic of
“automatically generating a description for an image.” In that re-
search, a convolutional neural network (CNN; i.e., a type of feed-
forward artificial neural network consisting of multiple layers of
receptive fields) is used to encode or “understand” the image.
Then, a long short-term memory (LSTM) recurrent neural network
(RNN) (35) is used to decode or “describe” the content of the
image (36, 37). The research is exciting, because it tries to connect
image recognition and natural language processing by integrating
two fundamental types of neural networks, CNN and LSTM.

In our de novo sequencing problem, the research is carried to
the next extreme, where exactly 1 of 20~ amino acid sequences can
be considered as the correct prediction (L is the peptide length,
and 20 is the total number of amino acid letters). Another chal-
lenge is that peptide fragmentation generates multiple types of
ions, including a, b, ¢, X, y, z, internal cleavage, and immonium ions
(38). Depending on the fragmentation methods, different types of
ions may have quite different intensity values (peak heights), and
yet, the ion type information remains unknown from spectrum
data. Furthermore, there are plenty of noise peaks mixing together
with the real ions. Finally, the predicted amino acid sequence
should have its total mass approximately equal to the given pep-
tide mass. This challenge points to a complicated problem of
pattern recognition and global optimization on noisy and in-
complete data. The problem is typically handled by global dynamic
programming (8-10, 12, 13, 15-19, 24), divide and conquer (11),
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Fig. 1. The DeepNovo model for de novo peptide sequencing. (A) Spectra
are processed by the CNN spectrum-CNN and then used to initialize the LSTM
network. (B) DeepNovo sequences a peptide by predicting one amino acid at
each iteration. Beginning with a special symbol start, the model predicts the
next amino acid by conditioning on the input spectrum and the output of
previous steps. The process stops if, in the current step, the model outputs
the special symbol end. (C) Details of a sequencing step in DeepNovo. Two
classification models, ion-CNN and LSTM, use the output of previous se-
quencing steps as a prefix to predict the next amino acid.

or integer linear programming (14). Hence, a naive application of
existing deep learning architectures does not work directly on this
problem. Neural networks are often known to be good at simu-
lating human brain capability, senses and intuition, rather than
such precise optimization tasks. Thus, de novo peptide sequencing
is a perfect case for us to explore the boundaries of deep learning.

In this study, we have succeeded in designing a deep learning
system, DeepNovo, for de novo peptide sequencing. Our model
features a sophisticated architecture of CNNs and LSTM networks
together with local dynamic programming. DeepNovo has beaten the
decade long-standing state of the art records of de novo sequencing
algorithms by a large margin of 7.7-22.9% at the amino acid level and
38.1-64.0% at the peptide level. Similar to other deep learning-based
models, DeepNovo takes advantage of high-performance computing
graphics processing units (GPUs) and massive amounts of data to
offer a complete end-to-end training and prediction solution. The
CNN and LSTM networks of DeepNovo can be jointly trained from
scratch given a set of annotated spectra obtained from spectral li-
braries or database search tools. This architecture allows us to train
both general and specific models to adapt to any sources of data. We
further used DeepNovo to automatically reconstruct the complete
sequences of antibody light and heavy chains of mouse, an important
downstream application of peptide sequencing. This application
previously required de novo sequencing, database search, and ho-
mology search together to succeed (21) but now can be done by using
DeepNovo alone.

Results

DeepNovo Model. The DeepNovo model is briefly illustrated in
Fig. 1. The model takes a spectrum as input and tries to sequence
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the peptide by predicting one amino acid at each iteration (Fig. 1.4
and B). The sequencing process begins with a special symbol
“start.” At each sequencing step, the model predicts the next amino
acid by conditioning on the input spectrum and the output of
previous steps. The process stops if, in the current step, the model
outputs the special symbol “end.” Backward sequencing is per-
formed in a similar way to form the bidirectional sequencing, and
the highest-scoring candidate is selected as the final prediction.

Details inside a sequencing step are described in Fig. 1C.
DeepNovo incorporates two classification models that use the
output of previous sequencing steps as a prefix to predict the
next amino acid. In the first model, the prefix mass is first cal-
culated as the sum of its amino acids’ masses and the corre-
sponding terminal. Then, each amino acid type is appended to
the prefix, and the corresponding theoretical b- and y-fragment
ions are identified. For each fragment ion, an intensity window of
size 1.0 Da around its location on the input spectrum is retrieved.
The combined intensity profile of the fragment ions then flows
through a CNN, called ion-CNN. The ion-CNN learns local
features (the peaks) and summarizes the overall information
provided by the fragment ions in the spectrum (SI Text).

The second model of DeepNovo is an LSTM network, the most
popular type of RNN (35). The LSTM model represents each
amino acid class by an embedding vector [i.e., a collection of pa-
rameters that characterize the class; similar to word2vec (39)].
Given a prefix, the model looks for the corresponding embedding
vectors and sequentially put them through the LSTM network.
Moreover, DeepNovo also encodes the input spectrum and uses it
to initialize the cell state of the LSTM network (36, 37). For that
purpose, the spectrum is discretized into an intensity vector that
subsequently flows through another CNN, called spectrum-CNN,
before being fed to the LSTM network (Fig. 14 and SI Text).

The outputs of the two models are finally combined to produce
a probability distribution over the amino acid classes. The next
amino acid can be selected as the one with the highest probability
or sampled from the distribution. Moreover, given the peptide
mass and the prefix mass, DeepNovo calculates the suffix mass
and uses the knapsack dynamic programming algorithm to filter
out those amino acids with masses that do not fit the suffix mass.
This processing guarantees that final candidate sequences will
have the correct peptide mass. Combining all together, DeepNovo
then performs beam search, a heuristic search algorithm that ex-
plores a fixed number of top candidate sequences at each itera-
tion, until it finds the optimum prediction. Additional details of
the model can be found in Methods and SI Text.

Datasets and Benchmark Criteria. We evaluated the performance of
DeepNovo compared with current state of the art de novo peptide
sequencing tools, including PEAKS [version 8.0 (40)], Novor (19),
and PepNovo (12). For performance evaluation, we used two sets
of data, low resolution and high resolution, from previous publi-
cations. The low-resolution set includes seven datasets (41-47)
(Table S1). The first five datasets were acquired from the Thermo
Scientific LTQ Orbitrap with the collision-induced dissociation
(CID) technique. The other two were acquired from the Thermo
Scientific Orbitrap Fusion with the higher-energy collisional
dissociation (HCD) technique. The high-resolution set includes
nine datasets acquired from the Thermo Scientific Q-Exactive
with the HCD technique (48-56) (Table S2). We chose data
from a wide variety of species and research groups to ensure an
unbiased evaluation. All datasets can be downloaded from the
ProteomeXchange database and the Chorus database. More details
about the datasets and liquid chromatography (LC)-MS/MS experi-
ments can be found in Tables S1 and S2 and the original publications.

We used PEAKS DB software [version 8.0 (40)] with a false
discovery rate of 1% to search those datasets against the UniProt
database and the taxon of the sample. The peptide sequences
identified from the database search were assigned to the corre-
sponding MS/MS spectra and then used as ground truth for testing
the accuracy of de novo sequencing results. Tables S1 and S2 show
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the summary of PEAKS DB search results for the low- and high-
resolution datasets, respectively.

We performed leave-one-out cross-validations. In each validation,
all except one of the datasets were used for training DeepNovo
(from scratch), and the remaining dataset was used for testing. Other
tools have already been trained by their authors and were only tested
on all datasets. It should be noted that the training datasets and the
testing dataset come from different species. The cross-validation is to
guarantee unbiased training and testing and does not give Deep-
Novo any advantage. All tools were configured with the same set-
tings, including fixed modification carbamidomethylation, variable
modifications oxidation and deamidation, and fragment ion and
precursor mass error tolerances (Tables S1 and S2).

To measure the accuracy of de novo sequencing results, we com-
pared the real peptide sequence and the de novo peptide sequence of
each spectrum. A de novo amino acid is considered “matched” with a
real amino acid if their masses are different by less than 0.1 Da and if
the prefix masses before them are different by less than 0.5 Da. Such
an approximate match is used instead of an exact match because of
the resolution of the benchmark datasets. We calculated the total
recall (and precision) of de novo sequencing as the ratio of the total
number of matched amino acids over the total length of real peptide
sequences (and predicted peptide sequences, respectively) in the
testing dataset. We also calculated the recall at the peptide level (ie.,
the fraction of real peptide sequences that were fully correctly pre-
dicted). Most importantly, all sequencing tools report confidence
scores for their predictions. The confidence scores reflect the quality
of predicted amino acids and are valuable for downstream analysis
[e.g., reconstructing the entire protein sequence from its peptides
(21)]. Setting a higher threshold of confidence scores will output a
smaller set of peptides with high precision but will leave the rest of
the dataset without results, hence leading to lower recall and vice
versa. Hence, given the availability of recall, precision, and confi-
dence scores, it is reasonable to draw precision-recall curves and use
the area under the curve (AUC) as a summary of de novo sequencing
accuracy (57). These measures of sequencing accuracy have been
widely used in previous publications (10, 12, 19).

Comparison of De Novo Sequencing Accuracy. Fig. 2 and Fig. S1
show the precision-recall curves and the AUC of de novo se-
quencing tools on the seven low-resolution datasets. DeepNovo
considerably outperformed other tools across all seven datasets.
In particular, for Homo sapiens, the AUC of DeepNovo was

33.3% higher than that of PEAKS (0.48/0.36 = 1.333) and 11.6%
higher than that of Novor (0.48/0.43 = 1.116). PEAKS and Novor
often came in the second place, whereas PepNovo fell behind,
probably because of not being updated with recent data. We also
noticed that Novor performed relatively better on CID data, whereas
PEAKS performed relatively better on HCD data. The AUC of
DeepNovo was 18.8-50.0% higher than PEAKS, 7.7-34.4% higher
than Novor, and overall, 7.7-22.9% higher than the second best tool
across all seven datasets. The improvement of DeepNovo over other
methods was much better on HCD data than on CID data, probably
because the HCD technique produces better fragmentations and
hence, more patterns for DeepNovo to learn. The superior accuracy
over state of the art sequencing tools on a wide variety of species
shows the powerful and robust performance of DeepNovo.

Fig. 3 4 and B shows the total recall and precision, respectively,
of de novo sequencing results on the seven datasets. Here, we used
all sequencing results from each tool, regardless of their confi-
dence scores. Again, DeepNovo consistently achieved both higher
recall and precision than other tools. DeepNovo recall was 8.4—
30.2% higher than PEAKS and 3.9-22.1% higher than Novor.
DeepNovo precision was 2.3-18.1% higher than PEAKS and 2.4
20.9% higher than Novor.

Fig. 3C shows the total recall of de novo sequencing tools at the
peptide level. MS/MS spectra often have missing fragment ions,
making it difficult to predict a few amino acids, especially those at
the beginning or the end of a peptide sequence. Hence, de novo-
sequenced peptides are often not fully correct. Those few amino
acids may not increase the amino acid-level accuracy much, but
they can result in substantially more fully correct peptides. As
shown in Fig. 3C, DeepNovo greatly surpassed other tools; its
recall at the peptide level was 38.1-88.0% higher than PEAKS and
42.7-67.6% higher than Novor. This result shows the advantage of
the LSTM model in DeepNovo that makes use of sequence pat-
terns to overcome the limitation of MS/MS missing data.

Fig. S2 shows the evaluation results on the nine high-resolution
datasets. Novor and PepNovo were not trained with this type of
data, and hence, their performance was not as good as PEAKS
and DeepNovo. As can be seen from Fig. S2, the AUC of
DeepNovo outperformed that of PEAKS across all nine datasets
from 1.6 to 33.3%. Fig. S3 shows that the total amino acid recall of
DeepNovo was 0.2-5.7% higher than that of PEAKS for eight
datasets and 3.1% lower than PEAKS for the H. sapiens dataset.
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At the peptide level, the total recall of DeepNovo was 5.9-45.6%
higher than PEAKS across all nine datasets.

We also evaluated DeepNovo, Novor, and PEAKS on three
testing datasets in the Novor paper (19). The results were con-
sistent with those reported earlier, and DeepNovo achieved 4.1
12.1% higher accuracy than the other tools (Fig. S4).

Performance of Neural Networks Models in DeepNovo. The improve-
ment of DeepNovo over state of the art methods comes from its two
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classification models, ion-CNN and LSTM, and the knapsack dy-
namic programming algorithm. Fig. 4 shows a detailed breakdown of
how those components contributed to the total recall. DeepNovo
has options to use its models individually or collectively, making it
very convenient for additional research and development. The
neural networks can be trained together, or they can also be trained
separately and combined via the last hidden layer, a common
training technique for multimodal neural networks. Although it is
not a simple cumulative increasing of accuracy when one combines

ion-CNN
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Fig. 4. The contributions of DeepNovo’s components to its total recall on seven datasets. C. elegans, Caenorhabditis elegans; D. melanogaster, Drosophila
melanogaster; E. coli, Escherichia coli; M. musculus, Mus musculus; P. aeruginosa, Pseudomonas aeruginosa; S. cerevisiae, Saccharomyces cerevisiae.
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multiple models, Fig. 4 suggests that there is still much room to
improve the LSTM network, and that will be our priority for addi-
tional development of DeepNovo.

Reconstructing Antibody Sequences with DeepNovo. In this sec-
tion, we present a key downstream application of DeepNovo for
complete de novo sequencing of mAbs. We trained the DeepNovo
model with an in-house antibody database and used it to perform de
novo peptide sequencing on two antibody datasets, the WIgG1 light
and heavy chains of mouse (21). Note that the two testing datasets
were not included in the training database. De novo peptides from
DeepNovo were then used by the assembler ALPS (21) to auto-
matically reconstruct the complete sequences of the antibodies (Figs.
S5 and S6). For the light chain (length of 219 aa), we were able to
reconstruct a single full-length contig that covered 100% of the
target with 99.5% accuracy (218/219). For the heavy chain (length of
441 aa), we obtained three contigs together covering 97.5% of the
target (430/441) with 97.2% accuracy (418/430). This application of
whole-protein sequencing previously required both de novo peptide
sequencing and database search together to succeed but now can
be achieved with DeepNovo alone. This result further shows the
major advantage of DeepNovo for de novo protein sequencing. In
addition, we also showed that DeepNovo was able to identify
peptides that could not be detected by database search (Fig. S7).

Discussion

De novo peptide sequencing is a challenging and computation-
ally intensive problem that includes both pattern recognition and
global optimization on noisy and incomplete data. In this study,
we proposed DeepNovo, a deep neural network model that
combines recent advances in deep learning and dynamic pro-
gramming to address this problem. DeepNovo integrates CNNs
and LSTM networks to learn features of tandem mass spectra,
fragment ions, and sequence patterns for predicting peptides.
Our experiment results show that DeepNovo consistently sur-
passed state of the art records in de novo peptide sequencing.

Interestingly, existing methods for de novo peptide sequencing
rely heavily on rigorous global dynamic programming or graph-
theoretical algorithms to address the global optimization problem.
Here, we use knapsack, a “local” version of dynamic programming,
to simply filter amino acids not suitable for the suffix mass, and we
do not perform backtracking. This result implies that (i) the neural
networks in DeepNovo learn better features that can bypass the
global optimization problem and that (ii) DeepNovo can be fur-
ther enhanced with more advanced search algorithms.

It should be noted that both method and training data are crucial
for the model performance. For example, deep learning models
often learn directly from raw data and require a large amount of
training data. Some other machine learning models may rely on
well-designed features based on domain-specific knowledge and
may need less training data. Our study shows that DeepNovo and
our training data achieved better de novo sequencing results than
other existing methods and their respective training data. A more
comprehensive benchmark study of de novo sequencing methods
could be done by collecting well-annotated, gold standard training
and testing datasets. This benchmark study is a potential question
for future research.

Some database search engines and postprocessors, such as MS-
GF+ (58) and Percolator (59), allow us to retrain their model pa-
rameters to adapt to a particular dataset and hence, increase the
peptide identification rate. Similarly, PepNovo (12) includes the
option to retrain its scoring models for de novo sequencing.
DeepNovo is also retrainable and provides a complete end-to-end
training and prediction solution. Retrainable is an important fea-
ture given massive amounts of data coming from several types of

. Johnson RS, Biemann K (1987) The primary structure of thioredoxin from Chromatium vino-

sum determined by high-performance tandem mass spectrometry. Biochemistry 26:1209-1214.
2. Martin-Visscher LA, et al. (2008) Isolation and characterization of carnocyclin a, a
novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307.
Appl Environ Microbiol 74:4756-4763.
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instruments and diverse species as well as different experiment
designs. DeepNovo can be first trained on a huge amount of data to
obtain a general model and then, gently retrained on a much
smaller yet more targeted data source to reach the final data-
specific model. Training data simply include a list of spectra and
their corresponding peptides, and such annotated data can be found
in spectral libraries, such as the NIST Mass Spectral Library, or
retrieved by using database search tools (e.g., PEAKS DB) (40).

Because our work introduces deep learning to de novo peptide
sequencing, there were no guidelines on how to design the ar-
chitecture of neural networks or how to train them with tandem
MS data. However, the lack of guidelines also means that there is
still a lot of room for improvement. Going deeper is definitely an
option. Another interesting topic is that protein sequences from
different species may be considered as different languages. Hence,
we need to explore how to train the LSTM network for a general
model and a species-specific model. We can also train models to
target a particular class of instruments or fragmentation tech-
niques. Those all are potential directions for additional research.

Although DeepNovo is presented here in the context of de
novo peptide sequencing, the idea can be easily extended to the
sequence database search, because both share the same problem
of matching a spectrum to a peptide. Moreover, we believe that
DeepNovo can be further developed for the analysis of data-
independent acquisition, in particular, the problem of inferring
multiple sequences from a tandem mass spectra that include
fragments from many different peptides. With the LSTM RNN,
DeepNovo can learn patterns of peptide sequences in addition to
the fragment ion information. The additional information of
sequence patterns can offer some help to address the ambiguity
of inferring multiple peptides from a spectrum.

After recent breakthroughs of deep learning in image pro-
cessing, speech recognition, and natural language processing,
DeepNovo makes important progress on de novo peptide se-
quencing, a fundamental and long-standing research problem in
the field of bioinformatics. Our work opens a door for combining
deep learning with other sophisticated algorithms to solve opti-
mization problems, especially those with complicated mixing of
signals and noises. This research will enable more applications of
deep learning in the near future.

Methods

The architecture of DeepNovo is described in Fig. 1. More in-depth details of
the model together with deep learning background are available in S/ Text.
DeepNovo is implemented and tested on the Google TensorFlow library,
Python API, release r0.10.

To train DeepNovo, a dataset is randomly partitioned into three sets: training,
validation, and testing. As we mentioned earlier, because of the one to many
relationship between peptide and spectra, it is important to make sure that the
three sets do not share peptides to avoid overfitting. The training dataset is
processed in minibatches. At each training step, a minibatch is randomly selected
from the training dataset and fed to the model. The model is provided with a real
prefix and asked to predict the next amino acid. The output logits and the real
amino acid are then used to calculate the cross-entropy loss function. Next,
backpropagation is performed to calculate gradients (partial derivatives) and
update the parameters using the Adam optimizer (60). During the training, we
periodically calculate the loss function on the validation set and decide to save the
model if there is an improvement. More training details can be found in S/ Text.
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