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Abstract

Memory networks show promising context understanding and reasoning capa-

bilities in Textual Question Answering (Textual QA). We improve the previous

dynamic memory networks to do Textual QA by processing inputs to simul-

taneously extract global and hierarchical salient features. We then use them

to construct multiple feature sets at each reasoning step. Experiments were

conducted on a public Textual Question Answering dataset (Facebook bAbI

dataset) in two ways: with and without supervision from labels of supporting

facts. Compared to previous works such as Dynamic Memory Networks, our

models show better accuracy and stability.

Keywords: dynamic memory networks, Attention based GRU, Textual

Question Answering

1. Introduction

Automated reasoning is a field of artificial intelligence (AI). It connects with

mathematical logic and computer science. Given some facts, the machine needs

to conduct inferences and then make judgements from these facts. In Natural
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Language Processing (NLP), the task of Textual Question Answering (QA) can5

be seen as a type of reasoning tasks: Given a question, the machine provides

an answer (judgement) based on a (miniature) knowledge base (facts) by ana-

lyzing the question, finding proper entities and attributes, and then retrieving

the answer (inference steps). A sample of Textual QA is give in Figure 1. The

well-known intelligent system IBM Watson builds its knowledge base from many10

different sources, from encyclopedia to the Internet, from structured infoboxes

to unstructured texts (Fan et al., 2012). However, Textual QA has its difficul-

ties: The facts are finite, simple sentences involving several objects (entities).

To answer a question, the machine must infer from the single source of limit-

ed facts precisely and recognize the entities and relations accurately. Though15

challenging, AI researchers have built inference engines as components in ex-

pert systems (Jackson, 1998), to deduct new knowledge from existing knowledge

bases. Typically the inference engines work with logics represented as IF-THEN

rules, constructed from explicit variables, predicates and quantifiers. However,

for natural language understanding, parsing the sentence may be difficult; the20

noises introduced may collapse the fragile logical system.

Facts supporting + Question → Answer

Lily is a swan.

Bernhard is a lion. Y es 2

Greg is a swan.

Bernhard is white. Y es 3

Brian is a lion. Y es 1

Lily is gray.

Julius is a rhino.

Julius is gray.

Greg is gray.

+ What color is Brian? → White

Figure 1: A sample from Facebook bAbI dataset.

The recent success of deep neural networks has brought a new solution to
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this traditional task. Firstly proved by some image processing tasks, the neu-

ral networks have shown great potential of capturing connections between the

observed elements, i.e., pixels or words (Vinyals et al., 2015; Xu et al., 2015;25

Yang et al., 2015; Antol et al., 2015). In NLP, the structures of convolutional

neural networks (CNN) (Hu et al., 2014) and recurrent neural networks (RN-

N) (Sutskever et al., 2014) map the words to higher dimensions while keeping

tracks of their contexts, hence are effective in many classification tasks (Kim,

2014; Lai et al., 2015) and sequential tasks (e.g.machine translation) (Kalch-30

brenner & Blunsom, 2013; Cho et al., 2014; Dzmitry Bahdanau, 2015; Meng

et al., 2016). In addition, Memory Networks (Weston et al., 2015a,b) and Neu-

ral Turing Machines (Graves et al., 2014) introduce external memory units and

flexible information storage mechanisms.

The paper is organized as follows. After reviewing related work in Section 2,35

we present our basic model in Section 3. Compared to other dynamic memory

networks (DMNs) (Kumar et al., 2016; Xiong et al., 2016), our basic model has a

subtly different internal structure and Attention based GRU (AttenGRU) (Ku-

mar et al., 2016; Xiong et al., 2016) mechanism. In Section 4, we present our

improved model - EnDMN. In Section 5, we show and analyze experimental40

results. In Section 6, we summarize the main contributions of this work and

propose some future research.

2. Related work

Open-domain Question Answering (openQA) is a classical QA task, which

requires an intelligent system to directly output a precise answer in natural lan-45

guage after receiving a question. For example, when a user inputs the question

“what is the largest inland lake in China?”, the system is expected to output

an answer “Qinghai Lake” rather than a list of ranked snippets and links. Re-

cently, an increasing number of knowledge bases (e.g., Freebase, YAGO, and

Google Knowledge) and corpus bases (e.g., blogs and forums) have become ac-50

cessible. Combining with other techniques, some new progress in openQA has
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been obtained (Sun et al., 2015; Bhati & Prasad, 2016).

Community Question Answering (CQA) is another hot issue in the field of

QA. Many online CQA platforms (e.g., Quora and Stack Overflow) have become

popular, where users can share knowledge in an interactive way. There is an55

obvious advantage to CQA - it allows users to obtain expected knowledge from

other users in a variety of ways. Users can post their questions or answers, and

comment or vote on contents posted by other users in the community. Namely,

a user can be a questioner, an answerer, or a reviewer. Recently, many improved

CQA systems have been proposed (Chang & Pal, 2013; Sahu et al., 2016a,b).60

Question classification (QC) is a key part of traditional search engines and

QA systems. QC can determine the entity of an answer and the pattern of an

answer beforehand, which reduces the search scope and promotes search accu-

racy for the following information retrieval and answer selection. For instance,

given questions “who was the first man to win the Nobel Prize in Literature?”65

and “what is a violin?”, the answer to the first question is supposed to be a

name, and the answer to the second question should have a particular pattern

like “A violin is. . . ” or “The violin is. . . ”. Some hybrid approaches to improve

the performance of QC can be found in (Loni, 2011).

As described above, there is a significant difference between Textual QA70

and other QA tasks. In Textual QA, the question is always closely related

to a miniature knowledge base (facts) about a particular scene. In this work,

we focus on Textual QA. The main contributions of our work are threefold.

First, we introduce global and hierarchical salient features of inputs (a question

and a series of facts). Other models only use one type of features. Second, we75

propose using a modified network to extract the hierarchical salient features of a

question to further improve the overall performance of our model. Third, we find

a method to utilize these features to control the extraction of the information

at each reasoning step. A main difference between our model and the closest

related approaches is shown in Table 1.80
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Table 1: A main difference between our model and the closest related models.

EnDMN DMNs

Global feature set and salient feature set Global feature set or salient feature set

3. Basic framework and approach

As mentioned in Section 1, logical rules and the chaining mechanism are the

traditional methods in building expert systems and solving logical problems, as

well as the succeeding work of semantic networks with ontology. These strategies

involve manual organization and labeling which are costly and time-consuming,85

hence are unsuitable to make use of the big amount of data.

The advance of deep learning revolution has presented new hope. With the

development of memory networks and their attention mechanisms, some logical

reasoning tasks have become popular and practicable recently. Researchers

do not have to build the knowledge base (ontology) themselves; but instead90

can solve Textual QA tasks with end-to-end neural networks such as End-To-

End Memory Network (E2E) (Sukhbaatar & Szlam, 2015), Dynamic Memory

Networks (DMN) (Kumar et al., 2016), Dynamic Memory Networks for Visual

and Textual Question Answering (DMN+) (Xiong et al., 2016), Neural Reasoner

(NR) (Peng et al., 2015) and so on (Yu et al., 2015; Andreas et al., 2016).95

3.1. DMN

A DMN is a type of end-to-end neural networks. It is usually composed of

four modules: an input module, a question module, an episodic module, and an

answer module. There are various networks to choose from for each module in

a DMN. In this paper, our basic model is assembled as below :100

Input module: The input module is seen as sentence readers to process

facts. Different encoding methods, including long-short term memory (LST-

M) (Hochreiter & Schmidhuber, 1997), gated recurrent units (GRUs) (Kumar

et al., 2016; Xiong et al., 2016), and position encoding (PE) (Sukhbaatar & S-
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zlam, 2015), are usually applied in a sentence reader. It contains two parts. The105

first part is a PE (Sukhbaatar & Szlam, 2015) layer, which is used to produce

original representations of facts si by:

si =
∑
j

(lj ·Axij) (1)

Where A is a word embedding matrix, lj is a column vector composed of the

elements lkj = (1 − j/J) − (k/d)(1 − 2j/J), with the number of words in the

sentence J and the dimension of the word embedding d. The second part is a110

bidirectional gated recurrent neural network (Schuster & Paliwal, 1997; Chung

et al., 2014), which is used to produce final representations of facts
←→
fi . A

same structure with different parameters is adopted to produce another final

representations of facts
←→
f
(a)
i , which are used to produce attention weights in the

episodic memory module.115

Question module: The question module of our basic model also is a sen-

tence reader to process a question. It includes a Recurrent Neural Network

(RNN). The final hidden state is seen as the representation of a question q.

Episodic memory module: This module is a core part of a DMN, where

the input module interacts with the question module. Typically, a DMN uses a120

recurrent attention structure to achieve the progressive information extraction

or reasoning in the episodic memory module. A reasoning step is regarded as

a hop. There are two mechanisms in the episodic memory module: an atten-

tion mechanism (Luong et al., 2015) and a memory mechanism. The attention

mechanism decides how to extract information from facts at each hop, which125

generally is implemented by attention weights gti :

zti = [
←→
f
(a)
i ◦mt−1;

←→
f
(a)
i ◦ q; |

←→
f
(a)
i −mt−1|; |

←→
f
(a)
i − q|] (2)

Zt
i = W (2)tanh(W (1)zti + b(1)) + b(2) (3)

gti =
exp(Zt

i )∑n
k=1 exp(Z

t
k)

(4)

Where ◦ denotes element-wise multiplication. zti is a feature set used to produce

gti , we notice that representations of a question q, facts
←→
f
(a)
i and previous memory
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mt−1 are considered when the model extracts information from facts at each hop.

After obtaining gti , the DMN uses the AttenGRU mechanism rather than a soft130

attention mechanism to produce a contextual vector ct.

Then, the memory mechanism is utilized to generate a new episodic memory

mt based on the previous episodic memory mt−1, the current contextual vector

ct, and the representation of a question q.

mt = ReLU(W [ct; q;mt−1] + b) (5)

Where ReLU is a Rectified Linear Unit and is defined as f(x) = max(0, x)135

where x is the input.

Answer module: The answer module receives the final output of the

episodic memory module mT to infer an answer by softmax(W (a)mT ). Then,

the model is trained by minimizing cross-entropy error. In addition, whether an

answer is composed of a single word or multiple words, we regard it as one word140

and do not use another RNN to produce the answer. For the English bAbI

dataset, answers in several tasks such as QA8 and QA19 consist of multiple

words and the model perform well on them when each answer is treated as one

word. Thus, we simplify this part.

3.2. Attention based GRU145

Because of the relatively concise structure and good properties of the GRU,

an increasing number of studies use it to construct their models. The traditional

GRU is implemented as follows:

ui = σ(W (u)xi + U (u)hi−1 + b(u)) (6)

ri = σ(W (r)xi + U (r)hi−1 + b(r)) (7)

h̃i = tanh(W (h)xi + ri ◦ U (h)hi−1 + b(h)) (8)

hi = ui ◦ h̃i + (1− ui) ◦ hi−1, (9)

Where ui , ri and hi represent the update gate, the reset gate, and the hidden

state of a GRU, respectively. Ideally, the update gate ui controls how much of150
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the previous information is retained, and the reset gate ri determines how to

combine the previous information with a new input.

The introduction of the attention mechanism brings substantial improve-

ment for RNNs, which makes a model pay more attention on more significant

elements. In textual translation (Sutskever et al., 2014; Dzmitry Bahdanau,155

2015), it significantly improves the quality of the translation. Attention based

GRU (AttenGRU) is a new attention pattern (Dzmitry Bahdanau, 2015) for

Textual QA, which combines the properties of a gated recurrent neural network

with traditional attention mechanism. It can extract positional information of

facts and significant information from facts. There are two types of AttenGRUs160

- AttenGRU1 and AttenGRU2. AttenGRU1 uses attention weights gi to directly

modify the internal mechanics of a traditional GRU using Equation 10 instead

of Equation 9.

hi = gi ◦ h̃i + (1− gi) ◦ hi−1 (10)

AttenGRU2 does not modify the traditional GRU, but adds Equation 11 behind

Equation 9 to produce a new hidden state.165

hnewi = gi ◦ hi + (1− gi) ◦ hi−1 (11)

AttenGRU1 and AttenGRU2 use attention weights gi to control the updating

of current information near the input port and the output port of a traditional

GRU, respectively.

It is worth noting that we apply a slightly different AttenGRU by combining

gi produced by a softmax function with AttenGRU2. Other works use it by170

combining gi produced by a sigmoid function with AttenGRU2, or combining

gi produced by a softmax function with AttenGRU1, etc.
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4. Enhanced question understanding with dynamic memory networks

(EnDMN)

4.1. Multiple representations175

As previously mentioned, there are numerous effective models for Textual

QA tasks. However, all of them only use one type of features from inputs at

each hop. Actually, there are various different features in them. For example,

when a human faces a question, he/she receives all kinds of information from the

question, such as the common knowledge including the meaning or the type of180

the question, the logic relationship between different parts of the question, etc.

Since, we produce a global representation qglobal and a salient representation

qsalient of a question at each hop. qglobal is expected to include common knowl-

edge of the question, and qsalient is expected to automatically extract salient

features of the question required for each hop. Namely, qglobal and qsalient are185

used to represent a question simultaneously rather than a single representation

in previous studies.

Compared to some other studies which focus on the facts, we focus more

attention on the question. A gated recurrent neural network is usually used

in the question module to produce the representation of a question, which is190

also used to produce qglobal in our models. However, we build a finer network to

produce qsalient. Because qsalient is expected to extract required features about a

question for each hop, how to focus more attention on the required information is

significant. In particular, when the question is complex, such as a long sentence

that includes multifaceted information, using a better strategy to extract salient195

features layer by layer is advantageous to reveal the relationship of multifaceted

features of a question. Salient features can be produced by various attention

methods such as hard-attention, local-attention and soft-attention. However, we

add another question module which contains a gated recurrent neural network

layer and a max-pooling layer to produce qsalient due to its conciseness and200
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(a) qglobal (b) qsalient

Figure 2: Internal structures of two question modules. w
′
, w are word embeddings of a

question.

effectiveness for our reasoning tasks. They are implemented as follows:

qglobal(l) = h
′

m(l) (12)

qsalient(l) = max(h1(l), h2(l), ..., hm(l)), l = 1, 2, ..., D (13)

Here, h
′

m is the final hidden state of a gated recurrent neural network in a

question module. h1, h2, ...hm are hidden states of a gated recurrent neural

network in the other question module, and D is the dimension of hidden states.

The maximum values of the elements at the same positions l of hidden states205

are chosen at the max-pooling layer. The internal structures of two question

modules are shown in Figure 2.

4.2. More abundant feature set

Now, We utilize both multiple representations of inputs to produce more

abundant feature sets zti(global) and zti(salient) by:210

zti(global) = [
←−→
f
(a′)t
i ◦mt−1;

←−→
f
(a)t
i ◦ qtglobal; |

←−→
f
(a′)t
i −mt−1|;

←−→
f
(a)t
i − qtglobal|] (14)

and,

zti(salient) = [
←−→
f
(a′)t
i ◦mt−1;

←−→
f
(a′)t
i ◦ qtsalient; |

←−→
f
(a′)t
i −mt−1|; |

←−→
f
(a′)t
i − qtsalient|] (15)

zti reflects interaction among facts, a question and the previous memory. Ob-

viously, multiple representations of inputs can lead to multiple feature sets -
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zti(global) and zti(salient), which are used to form attention weights gti at each

step. In this part, we apply two types of networks to produce global and hierar-215

chical salient representations of inputs. Static networks, which denotes networks

with same parameters at each step, are used to produce global representations

of facts and a question -
←−→
f
(a)t
i and qtglobal in Equation 14. While dynamic net-

works, which denotes networks with different parameters at each step, are used

to produce salient representations of facts and a question -
←−→
f
(a′)t
i and qtsalient in220

Equation 15 required for each step. In the episodic memory module, a dynamic

network is applied. A combination of a static network and a dynamic network

is beneficial to creating multiple feature sets - zti(global) and zti(salient). Then,

we use them to produce gti(global) and gti(salient), which form the final attention

weights gti by:225

gti = gti(global) + gti(salient) (16)

After obtaining gti , we use AttenGRU to extract required information of each

hop. The process of forming a contextual vector ct in EnDMN is illustrated in

Figure 3.

In brief, we use the same basic framework as DMNs, which includes four main

modules described in Section 3.1. We make modifications in the input module230

and the question module to obtain multiple representations of all inputs. We

then infuse them in the episodic memory module. Finally, the output of the

episodic memory module is delivered to the answer module.

5. Experiments

5.1. Training details235

In this study, we trained and tested our models on a public Textual QA

dataset provided by the Facebook - 10k English bAbI dataset (10k is the sample

size of each task). This dataset includes 20 types of logical reasoning tasks

marked from QA1 to QA20, such as QA16: basic induction, QA17: positional

reasoning, and QA19: path finding. An example from QA16 is illustrated in240
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Figure 3: Process of forming a contextual vector ct in EnDMN. F t
a, F t

a′ , F
t are representations

of facts. qt
i(global)

and qt
i(salient)

are representations of a question. gt
i(global)

, gt
i(salient)

and

gti are attention weights. mt−1 is the previous memory. The initial values of m are q1
i(global)

and q1
i(salient)

when forming g1
i(global)

and g1
i(salient)

.

Figure 1. Every sample contains facts, a question, an answer, and labels of

supporting facts. We refer to a model that does not use labels of supporting

facts as a single-supervision model. Otherwise we refer to it as a dual-supervision

model.

To evaluate the performance of all the models, we split the original training245

data into two sets for every Textual QA task: 90% for the training set and

10% for the validation set. The Adam optimizer (Kingma & Ba, 2015) with a

learning rate of 0.001 and batch size of 128 were applied for training. Training

runs were conducted for up to 256 epochs with early stopping if the validation

accuracy could not be improved within the last 20 epochs for all the QA tasks250

except QA3, for which we used the last 40 epochs. We used the last 70 sen-

tences as inputs of the input module except QA3, for which we used the last

130 sentences. The dimension of the word embedding and hidden states was

set to 80, and all the weights were initialized in [−
√

3,
√

3]. We also applied

dropout (Srivastava et al., 2014) in the input module and the answer module255
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Table 2: Settings of models. GRUs and GRUd represent a static gated recurrent neural

network and a dynamic gated recurrent neural network, respectively.

models Question module Parameters

Representation Structure α hops

DMN1 qglobal GRUs 0.00 3

DMN2 qsalient GRUd 0.00 3

DMN3 qglobal + qsalient GRUs +GRUd 0.00 3

EnDMN qglobal + qsalient GRUs +GRUd&maxpooling 0.00 3

DMN1(gate) qglobal GRUs 0.50 QA3,7,8: 5 others: 3

DMN2(gate) qsalient GRUd 0.50 QA3,7,8: 5 others: 3

DMN3(gate) qglobal + qsalient GRUs +GRUd 0.50 QA3,7,8: 5 others: 3

EnDMN(gate) qglobal + qsalient GRUs +GRUd&maxpooling 0.50 QA3,7,8: 5 others: 3

Epoch: 256 batch size: 128 Early stop: QA3, 40; others, 20 β: 1.0 Training times: 10

Dimension of word embeddings and hidden states: 80 Length of facts: QA3, 130; others, 70

(p=0.9) and l2 regularization (Ng, 2004) for all the weights. In order to avoid

the oscillation problem caused by random initial values and the random order

of training samples, we trained all the models 10 times.

We tested four kinds of models with two different supervision modes. The

objective function of these models is J = αE(gates) + βE(answers), where E260

is the standard cross-entropy cost; gates and answers denote the supervision

from labels of supporting facts and a real answer, respectively; and α and β are

scalars to control the proportion of the cost. If α = 0, it is a single-supervision

model, otherwise it is a dual-supervision model. The main settings of all models

are listed in Table 2.265

All of the models were successfully trained via back propagation and did

not require any preprocessing. First, we tested four single-supervision models

- DMN1, DMN2, DMN3, EnDMN. Then, we compared EnDMN with DMN+

and NR, which have been tested in other works. Finally, we tested four dual-

supervision models - DMN1(gate), DMN2(gate), DMN3(gate), EnDMN(gate).270

We can see progressive improvements of our models, from DMN1/DMN2 to

EnDMN, from DMN1(gate)/DMN2(gate) to EnDMN(gate).
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Table 3: Mean and minimum error rates (%) of single-supervision models. Other QA Tasks

(No. 1, 4, 6, 8, 9, 10, 11, 12, 13, 15, 19, 20) achieved 0 minimum errors across all models.

(a) Mean and minimum error rates (%) of DMN1, DMN2,DMN3, EnDMN

Task Mean error rates Minimum error rates

DMN1 DMN2 DMN3 EnDMN DMN1 DMN2 DMN3 EnDMN

QA2 7.7 3.0 1.3 1.4 0.1 0.5 0.2 0.0

QA3 23.2 21.6 11.2 11.2 6.4 7.8 9.0 6.0

QA5 0.9 0.7 0.4 0.6 0.3 0.5 0.2 0.4

QA7 2.5 2.2 2.2 2.3 0.8 1.0 1.2 0.3

QA14 1.7 1.4 1.4 1.5 0.5 0.0 0.5 0.0

QA16 48.9 49.0 47.7 45.8 43.7 45.3 43.0 39.0

QA17 6.9 11.1 5.4 5.1 1.5 4.5 1.7 1.3

QA18 3.9 2.9 3.0 1.5 0.4 1.0 0.4 0.3

Mean error - - - - 2.7 3.0 2.8 2.4

(b) Minimum error rates (%) of EnDMN,

DMN+, NR

Task EnDMN DMN+ NR

QA2 0.0 0.3 –

QA3 6.0 1.1 –

QA5 0.4 0.5 –

QA7 0.3 2.4 –

QA14 0.0 0.2 –

QA16 39.0 45.3 –

QA17 1.3 4.2 0.9

QA18 0.3 2.1 –

QA19 0.0 0.0 1.6

Mean error 2.4 2.8 –

5.2. Results and Analysis

The results of the single-supervision models are listed in Table 3. We chose

mean and minimum error rates of multiple measurements of these models as275

main reference values and marked the lowest error rates among these models

by boldface. If the mean error rate and the minimum error rate are closer to

each other for a model, we think the model is more stable or more resistant to

14



oscillation caused by random factors. We can find characteristics of four single-

supervision models according to the results in Table 3(a). Compared to DMN1280

and DMN2, DMN3 has better stability. EnDMN can not only keep stability but

also obtain the lowest mean and minimum error rates in the most of tasks and

better overall performance. It means EnDMN not only keep good characteristics

of DMN1, DMN2 and DMN3, but improve ability of a model further. Then, the

testing results of DMN+, NR and EnDMN are shown in Table 3(b), which chose285

minimum error rates as reference values. Compared to DMN+, NR, we find

EnDMN has better or approximately equal performance on the most of tasks,

especially on QA7: counting test, QA16: basic induction, QA17: positional

reasoning, and QA18: size reasoning, and better overall performance.

Table 4: Mean and minimum error rates (%) of DMN1(gate), DMN2(gate), DMN3(gate),

EnDMN(gate). Other Textual QA tasks (No. 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19,

20) and (No.16) achieved 0 minimum error and 0.1% minimum error across all models.

Task Mean error rates Minimum error rates

DMN1 DMN2 DMN3 EnDMN DMN1 DMN2 DMN3 EnDMN

(gate) (gate) (gate) (gate) (gate) (gate) (gate) (gate)

QA3 14.1 7.4 6.4 6.3 6.2 6.4 5.5 3.8

QA5 0.9 1.0 1.0 1.0 0.7 0.8 0.9 0.8

QA7 1.6 0.9 0.3 0.5 0.3 0.6 0.1 0.0

QA17 9.8 12.4 4.2 4.0 3.0 5.0 1.9 1.0

Mean error - - - - 0.5 0.6 0.4 0.3

Next, we showed the testing results of dual-supervision models in Table 4.290

More supervision provides more guidance to the training process. Since, there

are more 0 test errors for dual-supervision models than single-supervision mod-

els. We applied a similar method to train models(gate) and mark the results.

We can also see progressive improvements from DMN1(gate)/DMN2(gate) to

EnDMN(gate). In brief, the performance of EnDMN(gate) is superior to that295

of the other models. It obtained the lowest or approximately equal mean and

minimum error rates on almost all of tasks than other models.

The above results of experiments prove that our improvements play an active

role. We speculate an appropriate combination of global features and hierarchi-
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cal salient features from inputs is beneficial to improving the stability of a model300

and avoiding overfitting in some degree. Global features are required to govern

the extraction of the information at each hop for some tasks, but hierarchi-

cal salient features for others. Considering both global and hierarchical salient

features is a more flexible and comprehensive method to govern the process of

inference. Since, EnDMN/DMN3 obtained lower mean error rates. In EnDMN,305

two distinguishing networks are used to produce global and hierarchical salient

features of a question, which is expected to produce better features in different

levels. The testing results of experiments prove the modification in the question

module can further improve the overall performance. However, the training

time of EnDMN is longer than those of other models. In our experiments, the310

training time of EnDMN/DMN3 is no longer than twice that of DMN1/DMN2.

Nevertheless, the test time of every model is almost unaffected. Moreover, the

good stability of EnDMN enables it to obtain better results than others in the

same time interval. For example, we obtained 0 errors only at the eighth time

when we trained QA19 by DMN2, but obtained 0 error in five of the first eight315

times (5/8) by EnDMN. Finally, we show an example from QA7 to reveal how

EnDMN(gate) controls the extraction of the information in Figure 4.

6. Conclusions

In this work, we first summarized and analyzed the DMN and attention

based GRU mechanism, and then introduced our improved model - EnDM-320

N/EnDMN(gate), which can simultaneously consider both global and hierarchi-

cal salient features from inputs to control the extraction of the information at

each hop. The results showed that EnDMN/EnDMN(gate) had better stability

and accuracy than other models. Although EnDMN/EnDMN(gate) improves

the overall performance, there is still room for improvement. In the future, we325

will consider how to produce a more effective salient representation of a question

for each type of reasoning tasks or build a more flexible pattern to infuse the

global and salient features from inputs.
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Facts
∑
t
gi(global)t

∑
t
gi(salient)t

∑
t
gti

Sandra went to the hallway.

Sandra grabbed the apple there. 0.19 0.32 0.51

Daniel moved to the kitchen.

Sandra got the milk there. 0.46 0.50 0.96

Mary got the football there.

Sandra went back to the office.

Sandra put down the apple. 0.35 0.16 0.51

Daniel journeyed to the hallway.

Question : How many objects is Sandra carrying?

Figure 4: An example shows how a model pays attention on facts based on global features,

hierarchical salient features, and both of them. We labeled supporting facts with boldface

and showed the first three maximum value of the sum of gt
i(global)

, gt
i(salient)

and gti at

each hop(Equation 16) with blue blocks, respectively. The deeper color means the larger

value. Comparing the results of them, we find a model considering both global features and

hierarchical salient features focuses intensely on every real supporting fact.
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