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a b s t r a c t

Knowledge graph embedding aims to embed the entities and relationships of a knowledge graph in low-
dimensional vector spaces, which can be widely applied to many tasks. Existing models for knowledge
graph embedding primarily concentrate on entity–relation–entity triplets, or interact with the text
corpus. However, triplets are less informative, and the in-domain text corpus is not always available,
making the embedding results deviate from the actual meaning. At the same time, our mental world
contains many concepts about worldly facts. For human cognition, compared to knowledge that we
learned, common-sense concepts are more basic and general, and they play important roles in human
knowledge accumulation. In this paper, based on common-sense concepts information of entities from
a concept graph, we propose a Knowledge Graph Embedding with Concepts (KEC) model that embeds
entities and concepts of entities jointly into a semantic space. The fact triplets from a knowledge graph
are adjusted by the common-sense concept information of entities from a concept graph. Our model not
only focuses on the relevance between entities but also focuses on their concepts. Thus, this model offers
precise semantic embedding. We evaluate our method on the tasks of knowledge graph completion and
entity classification. Experimental results show that our model outperforms other baselines on the two
tasks.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As a collection of human knowledge, knowledge graphs have
become important resources for many Artificial Intelligence and
Natural Language Processing applications, such as question an-
swering, web searching and semantic analysis. Among the relevant
processes, knowledge embedding is a key step for knowledge rep-
resentation and knowledge graph utilization, especially because of
its compatibility with deep learning methods, which are currently
becoming increasingly popular.

Knowledge graphs encode structured information of relational
facts that are often represented in the form of a triplet (head
entity, relation, tail entity) (denoted as (h, r, t)). The embedding
of knowledge graphs is to learn continuous vector representations
(embeddings) for entities and relations of a structured knowledge
base (KB) such as Freebase [1] andWordnet [2], which aims at pro-
viding a numerical computation framework for knowledge graphs.
To accomplish this goal, many embedding methods have been
explored, such as TransE [3], PTransE [4] and so on.

Among these methods, the translation-based methods, such as
TransE and TransH [5], are simple and effective. They build entity
and relation embeddings by regarding a relation as a translation
from a head entity to a tail entity. These models assume embed-
dings of entities and relations that are in the same semantic space
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Rk. However, only the triplet information is deficient. As Fig. 1
shows, the head and tail entities can have multiple concepts, and
various relations can focus on different concepts of entities, which
makes only one semantic space insufficient for modelling.

The improved knowledge embedding methods with textual
descriptions have achievedmuch success, such as DKRL [6], SSP [7],
and Jointly(A-LSTM) [8], with deep neural networks. They employ
supplementary textual descriptions of entities and relations in
their embedding to discover semantic relevance. These methods
have been successfully applied when there are many entity and
relation-related textual descriptions. However, textual descrip-
tions are not always available, especially for in-domain descrip-
tions, while a cross-domain corpus would cause deviations in the
embedding results.

At the same time, while our mental world contains many con-
cepts about worldly facts, a concept is another important resource
for human cognition. Compared to knowledge, common-sense
concepts are more basic and general, and they play important
roles in human knowledge learning and accumulation. Therefore,
in our intuition, concept information would greatly benefit the
knowledge embedding results.

Microsoft Concept Graph [9] maps text entry entities to dif-
ferent semantic concepts and is tagged with corresponding prob-
ability labels that depend on the context. For example, as Fig. 2
shows, the instance (i.e., entity) ‘‘apple’’ is mapped to ‘‘fruit’’, ‘‘com-
pany’’ and other concepts, with the corresponding frequency tags
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Fig. 1. Concept information for entities in a fact triplet.

Fig. 2. ‘‘apple’’ in the Microsoft Concept Graph.

(defined as ‘‘Relations’’ by Microsoft). Conceptualization maps in-
stances or short text into a large auto-learned concept space,which
is a vector space with human-level concept reasoning. Therefore,
we could construct a concept subspace with concepts with a head
entity and tail entity in the concept graph for every triplet, which
enables us to compute the meaningful concept relevance between
entities in a principled way.

The incorporation of a concept graph into knowledge embed-
ding could reveal the concept relevance between entities and con-
tribute to precise semantic expression. Additionally, the concept
relevance and precise semantic expression could be able to recog-
nize true triplets. For example, for two triplets (Apple, Developer,
IPhone) and (Apple, Developer, Samsung Mobile), it is quite difficult
to distinguish which is the true triplet that contains fact triplets
only, because ‘‘IPhone’’ and ‘‘Samsung Mobile’’ both belong to mo-
bile phones. However, in the concept graph, ‘‘IPhone’’ has a concept
‘‘apple device’’, but ‘‘Samsung Mobile’’ does not. Thus, it is easy to
infer the correct triplet by mapping ‘‘IPhone’’ to the ‘‘apple device’’
concept.

Compared to embeddingmethodswith textual information, the
embeddingmethodwith concept information ismore general in its
tasks, and it does not depend on the topic of the corpus. Specif-
ically, when a corpus about technology is provided, embedding
methods with technical textual descriptions could easily infer the
fact (Apple, Developer, IPhone), because the keywords ‘‘hardware
products’’ and ‘‘iPhone smartphone’’ occur frequently in the textual
description of ‘‘Apple’’. However, it is difficult to infer the fact
(Apple, Taste, Sweet), which is irrelevant to textual descriptions of
‘‘Apple’’ about the specific topic of ‘‘technology company’’.

In contrast, the concept information of ‘‘apple’’ contains related
concepts such as ‘‘fruit’’, ‘‘taste’’, and ‘‘food’’. These concepts can
help to refine the topic of ‘‘apple’’ from ‘‘technology company’’
to ‘‘fruit’’. Therefore, concept information is different from the
domain-specific textual corpus, and it covers a variety of topics.
Furthermore, textual descriptions must be extracted from knowl-
edge bases or other resources, while the Microsoft Concept Graph
has provided concept information that could be directly used in
applications. Therefore, ourmethod is relativelymore efficient and
has a lower labour requirement in the data acquisition.

In this paper, we propose a model for Knowledge Graph Em-
beddingwith Concepts (KEC), which constructs strong correlations
between symbolic triplets and a concept graph by performing the
embedding process in concept subspaces. Specifically, wemeasure
the possibility of a triplet by projecting the loss vector onto a
concept subspace such as a hyperplane that represents the concept
relevance between entities. Thus, a fact triplet is always accepted
as long as the 2-norm of its projected loss vector in the semantic
concept space is sufficiently small.

We evaluate our model with the tasks of knowledge graph
completion and entity classification on the benchmark datasets
of Freebase and WordNet. Experimental results show that the
KECmodel achieves significant and consistent improvements com-
pared to state-of-the-art models.

2. Related work

In recent years, many knowledge embedding methods have
been developed, and they usually include three branches that are
related to ourwork: Knowledge Graph Embedding modelswith only
symbolic triplets, Embedding with Textual Information models, and
Embedding with Category Informationmodels.

2.1. Embedding with symbolic triplets

A knowledge graph is embedded into a low-dimensional con-
tinuous vector space while certain properties of it are preserved
[10]. For example, the most famous TransE [3] model relationships
occur by interpreting them as translations that operate on the
low-dimensional embeddings of entities. TransE performs well in
1-to-1 relations, while it has issues for modelling 1-to-N, N-to-1
and N-to-N relations. Thus, many variants of TransE are assumed,
and they would transform entities into different subspaces. For
example, TransH [5] andTransR [11] allowa entity to havedifferent
representations under different relationships. There are also some
other systems, such as RESCAL [12], SE [10] and LFM [13].

However, triplet information only is less-informative. Because
there are other available sources of information (such as textual
information in the following subsection, and concept information
in this paper) that could be supplementary to augment the knowl-
edge graph embedding, some improved models are proposed.

2.2. Embedding with textual information

Embedding with textual information attempts to use textual
information to help knowledge graph representation learning. The
studies in [14], [15] and [16] jointly embed knowledge and text
into the same space by means of aligning methods. SSP [7] focuses
on the stronger semantic interaction by projecting triplet embed-
ding onto a semantic subspace such as a hyperplane. Jointly (A-
LSTM) [8] uses a bidirectional long short-term memory network
(LSTM) [17,18]with an attentionmechanism [19] tomodel the text
description.

The textual information is approved as effective in helping
knowledge graph embedding. However, a text corpus, mainly text
descriptions for entities, is required for these methods. However,
text descriptions are not available or are not well-prepared for
many long-tailed entities. If a cross-domain corpus is used, itwould
make the embedding results deviate.
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Fig. 3. An illustration of context entities.

2.3. Embedding with category information

There are some embedding methods that integrate hierarchical
category information from large-scale knowledge bases. Entity Hi-
erarchy Embedding [20] learns a distance metric for each category
node andmeasures entity vector similarity under aggregatedmet-
rics. HCE [21] learns entity and category embeddings to capture the
semantic relatedness between entities and categories. However,
their goal is to extract semantics from plain text, which is different
from our knowledge graph embedding target.

3. Methodology

Our Knowledge Graph Embedding with Concepts (KEC) model
is to integrate concept graph information into knowledge graph
embedding. Therefore, it is composed of two components: con-
cept graph embedding and concept graph information enhanced
knowledge graph embedding.

Inspired by the knowledge graph embedding with text descrip-
tion method SSP [7], our model performs concept space projection
for knowledge graph embeddings. In other words, the loss vector
of a triplet is projected onto a concept subspace as a hyperplane
that represents the concept relevance between entities.

3.1. Concept graph embedding

In a Microsoft Concept Graph, as shown in Fig. 2, data is stored
in the form of (Instance (i.e., entity), Concept, Relations (i.e., fre-
quency)). It should be noted that the use of ‘‘Relations’’ here is
different from the relation r in a knowledge graph triplet (h, r, t).
Because the Microsoft Concept Graph contains the ‘‘IsA" relation
in its current release, here, the ‘‘Relations’’ indicates the frequency
of the instance mapped to the concept, which is measured by the
total number of its occurrences.

To learn representations for concepts and entities that can cap-
ture their semantic relatedness, we use the skip-gram model [22]
for embedding. The skip-gram model aims at generating word
representations that are good at predicting context words that
surround a target word in a slidingwindow.We extend the entity’s
context to be the entities with the largest frequencies that are
conceptualized into the same concepts. Therefore, a set of entity
pairs D = (et , ec) is acquired from the concept graph triplets as
follows, where et denotes the target entity, and ec denotes the
context entity.

In a concept graph, as shown in Fig. 3, each entity et can be
conceptualized into one or more concepts (c1, c2, . . . , ck), k ≥ 1,
and each concept ck contains one or more entities (e1, e2, . . . , ekn ),
kn ≥ 1, which are treated as candidate context entities. To learn
the embeddings of entities and concepts simultaneously, we adopt

a method that incorporates the labelled concepts into the target
entity when predicting its context entities, which is similar to the
TWE-1 model [23], which combines topic information with words
to predict context words.

For example, if et is the target entity, then its labelled concepts
(c1, c2, . . . , ck) would be combined with et to predict the context
entities. For each target–context entity pair (et , ec), the basic Skip-
gram formulation defines the probability of ec being the context of
et or ci using the softmax function:

P(ec | et ) =
exp(ec · et )∑
e∈E exp(e · et )

(1)

P(ec | ci) =
exp(ec · ci)∑
e∈E exp(e · ci)

(2)

where et , ec , and ci are vector representations of the target entity,
the context entity, and the concept of the target entity, respec-
tively. E denotes the set of entities, and exp is the exponential
function.

Our concept graph embedding object is to maximize the aver-
age log probability:

L =
1

|D|

∑
(ec ,et )∈D

[log P(ec | et ) +

∑
ci∈C(et )

log P(ec | ci)] (3)

where D denotes the set of target–context entity pairs, and C(et )
denotes the concept set of entity et . We adopt the stochastic gradi-
ent descentmethod to optimize the object. The initial learning rate
is 0.025, which decreases with an increase in the training samples
according to the following function:

α = starting_alpha× (1−count_actual/(real)(iter× total_size+1))
(4)

where α is the learning rate, count_actual is the number of trained
samples, iter is the number of iterations, and total_size is the total
number of training examples.

To handle large data sets, we use 12 threads in the training to
train the model in ten minutes. To avoid overfitting, we adopt the
‘‘negative sampling’’ method for the optimization target.

3.2. Knowledge graph embedding

To characterize a strong correlation between the knowledge
base triplets and concept information, we attempt to embed a
specific triplet into the concept subspace. First, we construct a
hyperplane with the normal vector c as the concept subspace:

c = C(eh, et ) =
eh − et

∥eh − et∥2
2

(5)

where C : R2d
→ Rd is the concept composition function, and eh,

et is the head entity and tail entity semantic vectors that are ac-
quired by the concept graph embedding, respectively. Since learn-
ing semantic embeddings with a skip-gram model can make the
vectors that connect the pairs of entities of a certain relation
almost parallel, e.g., vec(‘‘King’’) −vec(‘‘Queen’’) ≈ vec(‘‘Man’’) −

vec(‘‘Women’’), we suggest that the concept composition should
take the subtraction form.

The TransE model defines the score function as ∥h + r − t∥2
2,

whichmeans that the triplet embedding depends on the loss vector
l = h + r − t . Therefore, we can compute that the component of
the loss in the normal vector direction is (cT lc). Then, the other
orthogonal component, which is projected onto the hyperplane,
is (l − cT lc), as shown in Fig. 4. As a result, assuming that e is
length-fixed, the basic idea behind our model is to maximize the
component inside the concept hyperplane, which is ∥l − cT lc∥2

2.
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Fig. 4. Knowledge embedding loss vector projected onto the concept hyperplane.

We define the total score function as follows:

fr (h, t) = −λ∥l − cT lc∥2
2 + ∥l∥2

2 (6)

where λ is a suitable hyper-parameter factor to balance the two
parts. Moreover, the score function favours a lower value of the
energy for a triplet in the training set than for a corrupted triplet.
Furthermore, the projection part in our score function is negative,
and thus, more projection means less loss.

3.3. Model interpretation

First, ourmodel could discover the concept relevance.Weaimat
projecting the loss h′

− t onto the hyperplane, where h′
= h + r is

the translated head entity. We then utilize the theorem that states
that if a line lies on a hyperplane, then all of the points of that line
lie on the hyperplane also. Thus, the entities that have relevant
concepts always lay on a consistent hyperplane, and the loss vector
between them (h′

− t) is also around the hyperplane. Based on
this geometry, a corrupted triplet is far away from the hyperplane,
which results in a large loss. In contrast, even if the loss of a correct
triplet is large in terms of the knowledge embedding, it could be
smaller (or better) after being projected onto thehyperplane. These
considerations would imply that the concept information raises
the concept relevance, which refines the knowledge embedding.
For example, it is difficult to infer the possibility of the fact (Christo-
pher Plummer, /people/person/nationality, Canada) only within the
knowledge embedding. It ranks 11,831 out of 14,951 by TransE in
link prediction, which would be classified as an impossible fact.
However, in a concept graph, ‘‘Christopher Plummer’’ has the ‘‘actor’’
and ‘‘star’’ concepts, while ‘‘Canada’’ has the ‘‘country’’ and ‘‘nation’’
concepts. It is obvious that there exists the relationship ‘‘/peo-
ple/person/nationality’’ between the concepts of the two entities.
This consideration means that the two entities are relevant in the
semantic concept space. As expected, the triplet ranks 49 out of
14,951 in ourmodel after the concept projection,whichmeans that
it is more plausible.

Second, our model could offer a precise semantic expression.
In TransE, if the loss vectors of the triplets are equal-length, then
they are regarded as equivalent, and it is difficult to discriminate
them. However, our model incorporates conceptual semantics to
strengthen the discriminative ability. Specifically, we project the
equal-length loss vectors onto the corresponding concept hyper-
planes as the loss results, which makes a reasonable division of
the losses. For an instance of the query about which the director
made the film ‘‘WALL-E’’, there are two candidate entities, which
have the true answer ‘‘Andrew Stanton’’ and the negative answer
‘‘James Cameron’’. The losses of two triplets are almost equal only in
the knowledge embedding, and thus, it is difficult to discriminate
them. However, in the concept subspace, we discover that ‘‘WALL-
E’’ and ‘‘Andrew Stanton’’ both are very relevant to the ‘‘Pixar’’
concept, while ‘‘James Cameron’’ does not have this concept. In this

way, both the query and the true answer lie in the ‘‘Pixar’’-directed
hyperplane, whereas the query and the negative answer do not co-
occur in the corresponding associated concept hyperplane. Thus,
the projected loss of the true answer could be much less than that
of the false answer, which makes it easy for discrimination.

3.4. Objectives and training

Weminimize a margin-based objective function as follows:

L =

∑
(h,r,t)∈S

∑
(h′,r,t ′)∈S′

(h,r,t)

[γ + fr (h, t) − fr ′ (h′, t ′)]+ (7)

where [x]+ denotes the positive part of x, γ > 0 is a margin hyper-
parameter, and

S ′

(h,r,t) =
{
(h′, r, t) | h′

∈ E
}

∪
{
(h, r, t ′) | t ′ ∈ E

}
∪

{
(h, r ′, t) | r ′

∈ R
}

(8)

S ′

(h,r,t) is the set of corrupted triplets that are constructed according
to the Bernoulli distribution introduced in [5]. It is composed of
training triplets with the head or tail replaced by a random entity
(but not both at the same time) or a relation replaced by a random
relation.

The training procedure contains two steps: First, we pre-train
the concept graph embedding model according to Eq. (3) and
acquire entity vectors in concept space. Second, we apply these
entity vectors to knowledge graph embedding to minimize the
objective function over the training triplets. Both optimizations
adopt the stochastic gradient descent method.

4. Experiments

4.1. Datasets

Our model is evaluated on benchmarked public knowledge
graph datasets extracted from Wordnet and Freebase, denoted as
WN18 and FB15K. We adopt the datasets provided by Microsoft
Concept Graph [9] as the concept information. These datasets
contain 5401,933 unique concepts, 12,551,613 unique instances,
and 87,603,947 IsA relations. Because there are some entities that
are currently not included in the concept graph,we remove entities
not in the concept graph from WN18 and FB15K to construct
additional datasets, denoted as WN18(filt.) and FB15K(filt.).

4.2. Knowledge graph completion

Knowledge graph completion aims at predicting the relations
between the entities under supervision of the existing knowledge
graph, which is the most important benchmarked task for knowl-
edge graph embedding.

Evaluation protocol. For evaluation, we use the same ranking pro-
cedure as in TransE. For each test triplet (h, r, t), the head h (or
the tail t) is removed and replaced by each entity e in the knowl-
edge graph in turn. Then, the scores of those corrupted triplets
are computed by the score function fr (h, t). Finally, the rank of
the correct triplet is stored after sorting these scores in ascend-
ing order. We report the average of the ranks, denoted as Mean
Rank, and the proportion of test triplets ranked in the top 10 (as
HITS@10) as evaluation metrics. The above is called the ‘‘Raw’’
setting. Additionally, the other setting is called ‘‘Filter’’.When some
corrupted triplets end up being valid triplets, from the training set,
for example, they can be ranked above the test triplet. However,
these triplets are true and should not be counted as an error. Thus,
in the ‘‘Filter’’ setting, we propose to remove entries from the list
of corrupted triplets that exist in the training, validation or test set.
In both settings, a higher HITS@10 and a lower Mean Rank mean
better performance.
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Table 1
Entity prediction results on FB15K and WN18.

FB15K Mean rank HITS@10

Raw Filt. Raw Filt.

TransE 243 125 34.9 47.1
TransH 212 87 45.7 64.4
DKRL(CNN) 200 113 44.3 57.6
Jointly(A-LSTM) 167 73 52.9 75.5
SSP(Joint.) 188 85 53.5 77.1
KEC 180 81 53.9 77.3
KEC(Con.) 165 71 53.9 78.5

WN18 Mean rank HITS@10

Raw Filt. Raw Filt.

TransE 263 251 75.4 89.2
TransH 318 303 75.4 86.7
Jointly(A-LSTM) 134 123 78.6 90.9
SSP(Joint.) 168 156 81.2 93.2
KEC 165 154 81.5 93.8
KEC(Con.) 158 143 82.8 94.3

Table 2
Entity prediction results on filtered datasets.

FB15K(filt.) Mean rank HITS@10

Raw Filt. Raw Filt.

SSP(Joint.) 173 78 56.1 76.5
KEC 161 75 56.5 77.5
KEC(Con.) 126 50 60.6 80.0

WN18(filt.) Mean rank HITS@10

Raw Filt. Raw Filt.

SSP(Joint.) 170 156 81.2 93.2
KEC 162 154 85.7 95.5
KEC(Con.) 134 121 87.8 95.6

Baselines. We train all baseline methods using the codes provided
by the authors and select the best model using the parameters
reported in their literatures.

Implementation. For the experiments of KEC, we have attempted
several settings on the validation dataset to obtain get the best
configuration. Under the ‘‘bern’’ sampling strategy, the optimal
configurations are the following: (1) In concept graph embedding,
embedding dimension d = 100, initial learning rate α = 0.025,
threads number num_threads = 12, and iterations iter = 5, as the
implementation details of skip gram model are similar to
word2vec. (2) In knowledge graph embedding, embedding dimen-
sion d = 100, margin γ = 1.7, balance factor λ = 0.3 on FB15K,
and embedding dimension d = 100, margin γ = 5.0, balance fac-
tor λ = 0.3 onWN18; initial learning rate α = 0.001, which drops
to its half every 2000 rounds for both datasets. And it stops learning
when it converges, as the total loss stops decreasing.

To additionally utilize both the textual information and concep-
tual information, we use the concatenation of the output vector of
KEC and output vector of SSP as the entity and relation represen-
tation, which is called the Concatenation(Con.) setting.

On FB15K and WN18, the embeddings in concept space of
those entities not in the concept graph are initialized by averaging
their head and tail entity embeddings in concept space based on
symbolic triplets datasets.

Results. From the evaluation results shown in Tables 1–3, we can
observe the following:

(1) Our KEC model outperforms the baseline methods, includ-
ing TransE and TransH, significantly and consistently on all
metrics,whichdemonstrates the effectiveness of ourmodels
and the correctness of our intuition analysis.

Table 3
Relation prediction results on FB15K.

FB15K Mean rank HITS@10

Raw Filt Raw Filt

TransE 2.91 2.53 69.5 90.2
TransH 8.25 7.91 60.3 72.5
DKRL(CNN) 2.41 2.03 69.8 90.8
SSP(Joint.) 1.87 1.47 70.0 90.9
KEC 1.82 1.51 74.3 88.9
KEC(Con.) 1.35 1.02 78.8 90.9

(2) DKRL and SSP(Joint.) methods involve textual descriptions
to improve the entity representations. Although SSP is also
a hyperplane-based method, KEC adopts the hyperplane in
a concept-specific way instead of a semantics-specific way.
By focusing on the concept correlation between entities,
our model outperforms them. This finding indicates that
the concept information is more general and could be more
beneficial to enrich knowledge embedding than textual in-
formation.

(3) On FB15K, our KEC(Con.) model outperforms Jointly
(A-LSTM) model, although Jointly(A-LSTM) utilizes compli-
cated deep neural nets and has a higher expense of compu-
tation. OnWN18, KEC(Con.) is slightly worse than Jointly(A-
LSTM) on the mean rank, but it achieves a better hits@10.
The reason is most likely that there are some entities not
involved in the current release of Microsoft Concept Graph,
whose representations are not improved significantly and
thus ranks high and hampers the mean rank. Additionally,
our method obtains a more significant improvement on
the filtered datasets where the entities with concepts are
selected, which confirms this view.

(4) Because the concept and corpus are two valuable resources
for entity embedding, we suggest using the twowhen an in-
domain corpus is available; otherwise, we recommend our
concept only model.

4.3. Entity classification

The task is a multi-label classification that aims to predict
the entity types, which is crucial and widely used in many NLP
tasks [24].

We adopt two datasets. One dataset, denoted as FB15K, is the
same as DKRL, with 50 classes and 15K entities. The other dataset,
denoted as Wiki13K, is extracted from the Wiki [25] dataset with
60 classes and 13K entities. In summary, this problem is a multi-
label classification task, which means that for each entity, the
method should provide a set of types rather than a single type.

Evaluation protocol. In the training process, similar to SSP, we use
the concatenation of a conceptual vector and embedding vector
(ce, e) as the entity representation, which is the feature for the
front-end classifier. For a fair comparison, we also use Logistic Re-
gression as the classifier and the one-versus-rest setting for multi-
label classification, as in DKRL. For the subsequent evaluation we
follow [26], and we apply the mean average precision (MAP).

Implementation. Because we use the same benchmarked datasets,
we directly compare our models with the experimental results
of several baselines reported in the literature. To obtain the best
evaluation results, we train the model under the best configu-
ration, following the above experiment, of the knowledge graph
completion.
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Table 4
Evaluation results on entity classification.
Metrics FB15K Wiki13K

TransE 87.8 86.6
TransH 88.2 87.2
DKRL(CNN) 90.1 89.5
SSP(Joint.) 94.4 90.8
KEC 94.8 91.5
KEC(Con.) 95.0 92.2

Table 5
Rank statistics of Link Prediction. Here, r is the rank given by the corresponding
models.

KEC#r≤100

TransE#r≥500 610
TransE#r≥1000 268
TransE#r≥2000 81
TransE#r≥3000 35

Results. Table 4 shows the evaluation results on entity classifica-
tion. From this table, we can observe the following:

(1) In summary, ourmodel KEC(Con.) achieves the state-of-the-
art classification performance, which illustrates the capabil-
ities of our model.

(2) The KECmodel achieves a 8.0% and 7.5% improvement com-
pared with TransE and TransH on FB15K dataset and 5.7%
and 4.9% on Wiki13K dataset. As TransE and TransH only
focus on the structural information, these improvements
confirm the effectiveness of the concept integration.

(3) Compared to DKRL and SSP, the results show that incor-
porating the concept information into entity embeddings
could contribute to entity classification more than textual
information.

4.4. Concept relevance analysis

Modelling concept relevance is beneficial for correctly classi-
fying the triplets that could not be discriminated by using only
the structural information in the knowledge graph. To prove this
aspect, we reported statistical results on link prediction in Table 5.
The number in each cell means the number of triplets whose rank
is larger thanm in TransE and less than n in ourmodel. Specifically,
the triplet (Moonraker, /award/award_nomination/nominated_for,
For Your Eyes Only) ranks 987 in TransE, while 4 in KEC. Looking
into the concept graph, we discover that the two entities both
have the ‘‘bondmovie’’ concept. For another triplet, (Simon Property
Group, /organization/leadership/role, Chief Executive Officer), it ranks
at 536 in TransE while 91 in KEC. The entity ‘‘Simon Property
Group’’ has the concept ‘‘mall reit’’, while the other entity has the
concept ‘‘management director’’. There exists the relation ‘‘/orga-
nization/leadership/role’’ between the two concepts. The statistical
results show thatmany triplets benefit from the concept relevance
offered by the concept graph. The experiments also demonstrate
the effectiveness of our models and indicate the potential usage of
the concept relevance.

4.5. Precise semantic expression analysis

As discussed above, precise semantic expression with concept
information improves the performance of the discrimination. To
justify this statement, we collected those triplets whose scores are
slightly better than the golden triplets by TransE in link prediction
(in other words, these are hard examples for TransE) as negative
triplets, and then, we plotted the KEC score difference between

Fig. 5. Precise semantic expression analysis for KEC.

each corresponding pair of the negative and golden triplets, as
Fig. 5 shows. In the histogram, the x-axis indicates the score dif-
ference, where a larger value means better. The y-axis indicates
the proportion of the corresponding triplet pairs. The right bars
indicate that KEC makes a correct decision while TransE fails,
and the left bars mean that both KEC and TransE fail. We can
observe from the histogram that all of these triplets are predicted
wrongly by TransE, but with the concept information, our model
correctly distinguishes 82.5% of them. The experiments confirmed
our intuition and demonstrated the effectiveness of our models.

5. Conclusions

In this paper, we propose a Knowledge Graph Embedding with
Concepts (KEC) model for representation learning of knowledge
graphs with enhanced concept graph information. KEC could in-
corporate concept information into entity embeddings by char-
acterizing semantic relatedness between concepts and entities.
Concept information has a large impact on discovering concept
relevance and then offering precise semantic expression. In our ex-
periments, we evaluate our model on two tasks, including knowl-
edge graph completion and entity classification. The experimental
results show that our method achieves consistent and significant
improvements compared to the state-of-the-art baselines.

Currently, ourmodel is not based ondeep learning but is instead
simple and efficient. In the future, we will consider using deep
learning methods to make improvements.
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