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Abstract Knowledge bases (such as Wikipedia) are valu-
able resources of human knowledge which have contributed
to various of applications. However, their manual main-
tenance makes a big lag between their contents and the
up-to-date information of entities. Cumulative citation rec-
ommendation (CCR) concentrates on identifying worthy-
citation documents from a large volume of stream data for
a given target entity in knowledge bases. Most previous
approaches first carefully extract human-designed features
from entities and documents, and then leverage machine
learning methods such as SVM and Random Forests to fil-
ter worthy-citation documents for target entities. There are
some problems in handcraft features for entities and doc-
uments: (1) It is an empirical process that requires expert
knowledge, thus cannot be easily generalized; (2) The effec-
tiveness of humanly designed features has great effect on the
performance; (3) The implementation of the feature extrac-
tion process is resource dependent and time-consuming.
In this paper, we present a Joint Deep Neural Network
Model of Entities and Documents for CCR, termed as Deep-
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JoED, to identify highly related documents for given entities
with several layers of neurons, by automatically learn fea-
ture extraction of the entities and documents, and train
the networks in an end-to-end fashion.An extensive set of
experiments have been conducted on the benchmark dataset
provided in the Text REtrieval Conference (TREC) Knowl-
edge base acceleration (KBA) task in 2012. The results show
the model can bring a significant improvement relative to the
state-of-the-art results on this dataset in CCR.

Keywords Knowledge base acceleration - Cumulative
citation recommendation - Word embedding - Convolution
Neural Networks - Latent semantic representations

1 Introduction

Knowledge Bases (KBs), like Wikipedia' and Satori?, have
been successfully leveraged in various applications including
entity linking [1], query expansion [2], knowledge graph [3],
question answering [4], entity retrieval [5] and recommender
systems [6]. Keeping the contents of KBs timely is crucial to
these applications. However, it is very hard for most KBs to
be up-to-date owing to their manual maintenance by human
editors. There is a median time lag of one year between
the publication date of a news article and the date that the
news article is edited into a Wikipedia profile [7]. This time
lag would be significantly reduced if documents with high
relevance to the target entity in the KBs could be detected
automatically as soon as the documents are published online
and then recommended to the editors. This task is studied
as knowledge base acceleration-cumulative citation recom-

! https://www.wikipedia.org/
2 http://searchengineland.com/library/bing/bing-satori
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mendation (KBA-CCR) by the Text REtrieval Conference
(TREC). Formally, given a set of knowledge base entities,
CCR is to automatically detect worthy-citation documents
from a large volume of stream data.

Many relevant supervised models (e.g., classification,
learning to rank) have been used to solve the CCR task,
and achieved promising performances [8—10] by carefully
exploiting hand-designed features from entities and docu-
ments. Balog [9] has conducted an extensive set of exper-
iments on the TREC-KBA-2012 dataset with a total of 68
independent features involving entity features, document fea-
tures, temporal features, and document-entity features. These
approaches first extract human designed features from enti-
ties and documents, and then fed these features to the machine
learning algorithm. Obviously, this way suffers from the fol-
lowing limitations: (1) The choice of features is an empirical
process by expert design with low generalization ability. (2)
The effectiveness of humanly designed features would have
great effect on the performance; (3) The realization of feature
extraction is always resource dependent and time-consuming
to be implemented.

To address the above issues, we present a Joint Deep Neu-
ral Network Model of Entities and Documents for CCR,
named as DeepJoED, to learn distributed representations of
entities and documents automatically in an end-to-end fash-
ion. This approach is inspired by deep learning successfully
applying to various natural language processing applications.
Our DeepJoED takes the raw texts of entities and documents
as input, learns latent features for entities and documents
jointly using two coupled neural networks with several lay-
ers of neurons for feature representations, couples the latent
representations of entities with those of documents by a hid-
den layer to predict the worthy-citation level of the document
for the target entity, and trains the networks by backpropa-
gation in an end-to-end fashion.

We have conducted an extensive set of experiments on the
benchmark TREC-KBA-2012 dataset. The results reveal the
model achieves significant performance gains relative to the
state-of-the-art results on this dataset in the CCR task.

The key contributions of this paper are listed in the fol-
lowing:

e To the best of our knowledge, the proposed Joint Deep
Neural Network Model is the first model to deal with the
CCR task using deep neural networks. In the network
structure, DeepJoED jointly models entities and docu-
ments with their raw texts as input by two coupled neural
networks. Then the interaction layer couples the two par-
allel networks and the output layer further computes their
relevance scores.

e With simple raw texts inputs, our DeepJoED model
doesn’t require any human interpretation for feature
extraction. It represents entities and documents as word-
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embeddings sequences using either pre-trained Word2vec
model or random initialized vectors, and trains the model
by backpropagation. It provides an end-to-end approach
to CCR task. Furthermore, the model can be extended
for online learning scenarios where the model needs to
be updated continuously with new data.

e We conduct a series of experiments of the proposed
DeepJoED model on the TREC-KBA-2012 dataset, the
experimental results show that the model outperforms the
state-of-art results in the CCR task.

2 Related work
2.1 Cumulative citation recommendation

TREC launched the KBA-CCR (also known as CCR) track
since 2012. Participates and researchers treat CCR task as
either a ranking problem [5,11] or a classification problem
[12-14]. Balog and Ramampiaro [9] conducted an exten-
sive experiments using classification methods and learning
to rank methods on the TREC-KBA-2012 dataset with a total
of 68 human-selected features regarding to entities and doc-
uments. These methods first extract various human-selected
features of entities and documents, and then the extracted
features are fed to a powerful machine learning algorithm.
Unlike the previous methods that require firstly extracting
various hand-crafted features, we present a joint deep model
of entities and documents for CCR that takes the raw texts
of entities and documents as input, and trains the model by
backpropagation in an end-to-end fashion.

2.2 Deep learning for NLP and IR

Thanks to their ability to learn complex representations of
different data in different tasks [ 15] with the same form of real
valued vectors, deep learning approaches have been success-
fully used in natural language processing (NLP) tasks, infor-
mation retrieval (IR) applications, malware detection [16]
and so on. The foundation of deep learning architecture for
NLP and IR is distributed word representations in semantic
vectors space [17], where each word is represented with a
real valued vector, named as word embedding. A word is
previously represented as one-hot vector by indexing words
into a vocabulary, but word embeddings are learned by pro-
jecting words onto a low dimensional and dense vector space
that encodes both semantic and syntactic feature of words.

Using word embeddings, a variety of models have been
presented to learn the composition of words to construct
phrase, sentence and document representations. Most
approaches fall into three types: sequence models, convolu-
tional neural networks (CNN) models and dependency based
neural network.
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Sequence models such as recurrent neural network (RNN)
and Long short-term memory networks (LSTM) have
emerged as an effective and scalable model for several
sequential data related learning problems [18]. They build
sentence (also called short texts) representations in an order-
sensitive way. For instance, due to its ability to capture
long-distance dependencies, LSTM has re-emerge as pop-
ular choice for many sequence-modeling tasks like language
modeling, machine translation [19], natural language gen-
eration [20] and so on. The central idea behind LSTM is a
memory cell which captures information over time, and non-
linear gating units which regulate the information flow into
and out of the cell, so the output of last state of the mem-
ory cell is used as the final sequence representations, such
as a sentence or a document. The researchers have presented
more sophisticated types of RNN to deal with more complex
sequence problems such as Bidirectional RNN, Deep RNN,
Multilayer RNN [19].

In recent years, CNN-Based models have demonstrated
remarkable performances on sentence modeling and classifi-
cation tasks. Leveraging convolution operators, these models
can extract feature from variable-length phrases correspond-
ing to different filters. For example, Collobert et al. [21]
propose a unified neural network architecture and learning
algorithm to deal with various NLP tasks. The network takes
the sentences as inputs, and then learns feature extraction
using several layers of neural networks including word-
embedding, convolution units, max-pooling units, linear and
non-linear units. Kim [22] presents a simple convolutional
neural networks (CNN) with one layer of convolution on
top of word vectors for text classification. Kalchbrenner et
al. [23] propose a Dynamic Convolutional Neural Network
(DCNN) to construct hierarchical features of sentences by
one-dimensional convolution and dynamic k-max pooling.
DCNN obtains high performance in sentiment prediction,
question classification, and Twitter sentiment prediction.
Johnson and Zhang [24] propose a Deep Pyramid Con-
volutional Neural Networks for text Categorization, called
deep pyramid CNN (DPCNN). When discrete text is con-
verted to continuous representation, the DPCNN architecture
simply alternates a convolution block and a downsampling
layer over and over, inducing a deep network in which
internal data size shrinks in a pyramid shape. The DPCNN
with 15 weighted layers achieves good performance on six
benchmark datasets for sentiment classification and topic
classification. CNN-Based models also have been success-
fully employed to conduct semantic matching in web search
for document retrieval [25-27], and significant improvement
in relevance have been observed.

Dependency based neural network utilizes CNN and RNN
to build up the architecture for specific tasks, which can fully
exploit CNN and RNN. Zhang et al. [28] present depen-
dency sensitive convolutional neural networks (DSCNN)

as a general purpose classification system for both sen-
tence and documents. DSCNN consists of a convolutional
layer built on top of long short-term memory (LSTM) net-
works. For a single sentence, the LSTM network processes
the sequence of word embeddings to capture long-distance
dependencies within the sentence. The hidden states of the
LSTM are extracted to form the low-level representation,
and a convolutional layer with variable-size filter and max-
pooling operators follow to extract task-specific features for
classification purposes. For document modeling, DSCNN
first applies independent LSTM networks to each subsen-
tence, then a second LSTM layer is added between the first
LSTM layer and the convolutional layer to encode the depen-
dency across different sentences. Lee and Dernoncourt [29]
introduce a model based on RNN and CNN for sequential
short-text classification. The model consists of two parts. The
first part generates a vector representation for each short text
using either the RNN or CNN architecture. The other classi-
fies the current short text based on the vector representations
of the current as well as a few preceding short texts.

Inspired by these deep learning models, our proposed
model integrates two parallel deep networks for entities and
documents representations based on word-embedding, con-
volution and max-pooling, followed by feature concatenation
and correlation calculation layers.

3 Problem statement

We consider CCR as a binary classification problem that
treats the relevant entity-document pairs as positive instances
and irrelevant ones as negative instances. Many proba-
bilistic classification approaches generally can be classified
into two categories in the literature: generative models and
discriminative models. Discriminative models have attrac-
tive theoretical properties [30] and generally perform well
relative to their generative counterparts in the field of
information retrieval [31,32]. Therefore, we adopt discrimi-
native probabilistic models to model the probability of each
entity-document pair using deep neural networks in this
paper.

Suppose we have an entity e in a set of knowledge
base entities E, and a document d from a document col-
lection C, where e = {wy, wa, ..., wy,} consisting of m
word sequences, and d = {t1, 2, ..., t,} including n word
sequences. Our objective is to estimate the relevance between
the document d and the given entity e. In other words, we
need to estimate the conditional probability of relevance
P(rle, d) regarding an entity-document pair (e, d), where
r € {1, 0}, 1 indicates the entity-document pair (e, d) a pos-
itive instance, and 0 indicates it a negative instance. In this
paper, we use a joint deep neural networks of entities and doc-
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Fig. 1 The architecture of the proposed model. Two parallel networks
coupled at the Interaction layer, and the relevance score are output at
the top of the architecture

uments to model P(r|e, d) in the following in an end-to-end
fashion.

4 Methodology

DeepJoED models the relevant of entities and documents
using their raw texts. It is a convolutional neural network
(CNN) based model consisting of two parallel neural net-
works, coupled to each other in an interaction layer, and
output the relevant scores of an entity and a document at
the top of DeepJoED. The networks are trained in a joint
manner on a training dataset with minimum loss. The train-
ing dataset is composed of entity-document pairs where the
entity is from a set of target entities and the document comes
from a stream corpus. DeepJoED is summarized in Fig. 1.
We will describe DeepJoED in details in this section.

4.1 Architecture of DeepJoED

The architecture of DeepJoED for CCR is shown in Fig. 1.
The model consists of two parallel neural networks sharing
weights and biases, and coupled in the interaction layer. One
network is for entities (Net,) and the other is for documents
(Nety). For any of entity-document pairs, texts of the entity
and document are fed to Net, and Net; respectively as input,
and corresponding relevance score of the entity-document
pair is computed as output.
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e In the first layer, denoted as the Input layer, the raw word
sequence of an entity-document pair are fed to our archi-
tecture as sequence indices taken from a finite dictionary
D, which was built on the basis of the word set of target
entities and the stream corpus. Note that the dictionary
D contains a special word as "unknown’, and words out-
of-dictionary will be mapped to *unknown’.

e In the second layer, denoted as the Look-up layer, the
entity and document are represented as two correspond-
ing matrices of word embeddings by a lookup table
operation.

e Next two layers are two layers commonly used in the
CNN models—the Convolution layer and Max-pooling
layer. These two layers discover multiple levels of fea-
tures underling the entity and document.

e The Interaction layer is added on the top of the two par-
allel networks to make latent factors of the entity and
document to be combined in the same semantic space.
The output of this layer is fed to the top layer.

e The top layer, denoted as the Output layer, computes the
relevance scores of the entity-document pair as output,
by a fully-connected network.

In the following subsections, we will describe each layer in
detail. As the two networks Net, and Net, are only different
in inputs, we focus on explaining the structure of Net,, the
Interaction layer, and the Output layer.

4.2 Input layer

We first pre-process the dataset of all target entity profiles
and all documents from the stream corpus to build a finite
dictionary D containing most common words. The first word
in the dictionary D is unknown’, and its index is 0. All words
out-of-dictionary are replaced by ’unknown’. In the Input
layer, the two networks Net, and Net; take the sequence
indices of the raw texts of an entity e and a document d
through looking up the dictionary D, respectively. Formally,
we denote ¢ = {wy, wy, ..., wy,}and d = {11, 1, ..., t,},
where w; i =1,...,m)and¢; (j = 1,...,n) are indices
in the dictionary D, m and n are lengths of the entity e and
the document d respectively shown in Fig. 1.

4.3 Look-up layer

Word embedding A word embedding g : D — H is a
parameterized function that map any of words in the dictio-
nary to the k —dimensional real value vector representation,
known as word embedding. D is the dictionary of words that
occur in the entity profiles and documents corpus with the
first word unknown’, and H € R¥*IPl is a matrix with
real-valued parameters to be learned. Each column of H (i.e.
[H];) is a vector with real values corresponding to the word
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in D (i.e. D;), and the length of the dictionary D is equal
to the number of columns of H. For simplicity, however, D
always uses indices of words in the dictionary D to repre-
sent the words. Therefore g : D — H is the function that
projects any index of word in D to the k — dimensional
real value vector. In this paper, we identify H in two ways.
One is that we use the Word2Vec [33] method to learn word
representations from the dataset of all target entity profiles
and all documents in the stream corpus. During training pro-
cess of the networks, we denote the learned H as H, if H
will be updated, otherwise as Hy. The other way is that we
randomly initialize H, and then H will be learnt during the
training process. In this case, we denote H as H,. Note that
H,,H; and H, are regarded as channels similar to images. In
our experiments, we conducted experiments with one chan-
nel or two channel combinations of word vectors over the set
of {H,, Hy, H,}.

Entity and document representations Let x; and y; € RF
be k-dimensions word vectors corresponding to the i-th
word in an entity profile and the j-th word in a docu-
ment, respectively. That can be done by looking-up H. Let
[H]; represents the i th column of matrix H. According to
e = {wy,wy,...,wy,}and d = {11, 1, ...,t,} defined in
Sect. 4.2, we can define an operator Lu, such that

xi = Lu(w;) =[H]y;,i =1,...,m, n
yj = Lu([J) = [H]tjvj = l, (B

Thus, for the entity e and document d, we can produce the
following two output matrices:

Xe = X1:m = ([H]wl[H]wz-n[H]wm)v )
Yd = Ylin = ([H]tl [H]; ... [H]tn) ,
where x, and y; denote the semantic representations of the
entity e and the document d, respectively. Note that H can
be replaced by H,, H; or H,. Obviously, this representation
retains the orders of words in the entity profile and the docu-
ment. These two matrices can then be fed to the Convolution
layer, as will be explained below.

4.4 Convolution and max-pooling layers

In order to use convolution operations over x, and y; in (2)
to capture local semantic features of the entity and docu-
ment, we let x;.;4; and y;.;4; refer to the concatenations of
Xiy Xi41, ..., Xiq and y;, yjt1, ..., ¥j4 to build up word
embedding segment sequences, respectively. More formally,

Xii+l = ([H]wl [H]w,-+1 cee [H]wiH) s

3
)’j:j-q—l = ([H]tj [H]tj+1 s [H]t]ur[) ( )

are two sub-matrices.

Given a set of filters and bias terms F = {(W,, by)|v =
1,..., L}, a convolution operation involves a filter (kernel)
W, € R%win*k and a bias term b, € R from F, which are
applied to a window of d,,;,, words to produce a local feature.
For instance, a local feature ¢;; is produced from a window
of words x;.;4+4,. —1 of the entity x, by

win

e, = f (Wv X i1 +bv)s 4

where f is a non-linear function such as Rectified Linear
Units (ReLUs) [34]. This filter is applied to any possible
window of words in the entity x, :

(X 1edin s X2:dpin+15 - - = » Xm—dyin+1:m}

to compute a feature map

ey = [ez1 I A ezm,dwml] , (5)

where e, corresponding to the filter W), and the bias term b,,.
Similarly, we can obtain

dy = [diy. diys oy gy, ] ©)

where dj; (i = 1,...,n —dyi, + 1) is a local feature of the
document y; by applying the filter W, and the bias term
b,. Please note that for each window size, it corresponds to
L separate filters. For simplicity, we suppose here one win-
dow size (i.e. total L filters). In the two channel combination
architecture shown in Fig. 1, each filter is applied to both
the combined channels similar to the processing of images.
We noted that L and d,,;,, are hyper-parameters to be learnt
during training of the model.

According to the outputs of convolution operation units,
we then apply the max pooling operation [21] over the feature
maps e, and d,. After that, we acquire two fixed size vectors
shown in (7) to feed it to the next layer.

€max = [éla é2» ceey éL]

A A A @)
dmax = |:d17 d2» e dL] s
where e, (v = 1, ..., L) is max value among e, defined in
(5),anddy(v =1, ..., L) is max value among d, defined in

(6). This pooling scheme indicates that we can naturally deal
with various length of entities or documents, and acquires
fixed-size outputs.

4.5 Interaction layer

Although the two fixed-sized outputs (7) can be viewed as
features of the entity e and the document d, they are in dif-

@ Springer
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ferent feature spaces and cannot be directly used. Thus, in
order to map them into the same feature space, we introduce
a hidden layer, called Interaction layer, to couple Net, and
Nety.

Formally, we first concatenate e, and dy,,, (7) into a
single vector z = [emax, dmax], 1-€.,

7= [@1, &, ....ér.dy, da, --~,€;’L] (®)

where the size of zis 2L, and L is the number of filters. Then,
let W, € R2L*L and b. € RL, and the output of Interaction
layer is as follows:

I=f (W *z" +b) &)

where f is also a non-linear function such as Rectified Linear
Units(ReLUs) [34], and W/ and z' denote the transpose of
W, and z, respectively. These outputs are fed to the next layer
of the network.

4.6 Output layer

The Output layer computes the relevance score of the entity e
and the document d. Formally, let W, € RE*! and b, € R',
and we define the output score as follows:

score = WOI xI' +b, (10)

where W/ and I' are the transpose of W, and I, respectively.
According to the score, we determine the conditional prob-
ability

P(r=1le,d) = o(score) (11D

for the entity-document pair (e, d), where o is the sigmoid
function.

5 Network learning

Because of the non-uniform distribution of positive instances
and negative instances in the training set in most cases, we
introduce an parameter y to trade off recall and precision
through up- or down-weighting the cost of a positive error
relative to a negative error. The objective loss function is the
weighted cross entropy of the training data. More specif-
ically, assuming entity-document pairs in training set are
represented as T = {(ey, dy)}, and R = {r,} denotes the cor-
responding relevance judgement (i.e., +1 or 0) of (e4, dy)
where ¢ = 1,..., N, and training instances are indepen-
dently generated. Thus, the weighted cross entropy of the
training data is written as follows:

@ Springer

Table 1 Hyperparameters and their definitions

Hyperparameters Definitions
k The dimensionality of word embedding
dwin The window size of convolution operation
L The number of filters for each window size
y The weights of positive instances
P The proportion of dropout
batch_size The size of batch for training
N

L©) =Y [rg * (~log (P (rgleq. dy))) + v

po (12)

+ (1 —rg) = (—log (1 - P (rq|€qv dq)))]

where P(rgleq,d;) = o(scoreg)(g = 1,...,N) is the
output of the network in (11), and 6 denotes the trainable
parameters of the network, which are optimised using batch
stochastic gradient descent [35].

5.1 Regularization

In order to cope with “overfitting”, we leverage dropout [36]
on the outputs of the Max-pooling layer. Dropout prevents
complex co-adaptations of hidden units by randomly drop-
ping out the hidden units with a proportion p € [0, 1] during
forward-backpropagation. More specifically, given

emax = [61,62, ..., éL]

dmax = [d/\l’ dAZ» e dAL]

in (7), and r € {0, 1}¥ is a “masking” vector of random
variables with each variable having the probability p of being
1 and 1 — p of being 0, dropout first perform the following
operation

emaxorz[el*rl,ez*rz,...,eL*rL]

dmaxorzI:dl*rladZ*rZw--adL*rL]

where o is the element-wise multiplication operator, and then
replaces e,,4x and dy,qx With e;,,4x or and d;, 4« or respectively
in the further layer of the network. Gradients are backprop-
agated only through the unmasked units. During test stage,
we set the probability p as 1.

5.2 Hyperparameters

In our model, there are six hyperparameters to be determined.
These hyper-parameters are summarized in Table 1.
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Table 2 Four-point relevance estimation of documents

Type Definition

Central Relates directly to the target entity; e.g., the entity is
a central figure mentioned in the topics or events.

Relevant Relates indirectly to the target entity; e.g., refers
topics or events that are likely to have an impact on
the entity.

Neutral Not relevant; nothing can be inferred about the target
entity, e.g., entity name used in product name.

Garbage Not relevant; e.g., spam.

Table 3 Number of annotated training and test instances

Type Central Relevant Neutral Garbage Total
Train 3525 6500 1757 9382 21171
Test 5256 8426 2470 20439 36591

6 Experiments
6.1 Dataset

We conduct our experiments on the TREC-KBA-2012
dataset, which is a standard test set provided by TREC.? The
dataset contains a set of target entities and a stream corpus
from three sources including linking, social and news.

Entity Set The entity set is composed of 29 Wikipedia items,
more specifically, 27 persons and 2 organizations. Each entity
is described by a semi-structured article in Wikipedia called
profile, and identified uniquely by a ur Iname.

Stream Corpus The stream corpus, spanning the period
from October 2011 to April 2012, consists of documents
crawled from news, social media, and Linking. The corpus is
approximately 9TB of raw texts, and contains 462,676,772
documents. Each document is time-stamped and uniquely
identified by a stream_id indicating its time of publica-
tion. The corpus is split as training and testing instances, with
documents from October to December 2011 period as train-
ing instances, and the remainder for testing instances. We
follow this setup.

Annotation Given a target entity in the set of entities, the
relevance of a document in the scream corpus is judged
by annotators in terms of a four-point relevance estimation
including Garbage, Neutral, Relevant and Central, their def-
initions are listed in Table 2. The detailed annotations of
training and testing instances are listed in Table 3.

3 http://trec-kba.org/kba-ccr-2012.shtml.

6.2 Evaluation scenario

According to the four-point relevance estimation of entity-
document pairs, we evaluate the proposed model in the fol-
lowing classification scenario. Only Central entity-document
pairs are treated as positive instances, and the remainders as
negative instances. We denote this scenario as Central Only
in the following descriptions. We note that the Central Only
scenario is the main task of KBA-CCR-2012.

6.3 Evaluation metrics

Since we train a global model regardless of specific entity
information, we adopt precision, recall and F1 (harmonic
mean between precision and recall) as the evaluation mea-
surements in an entity-insensitive manner. In other words, the
metrics are calculated based on the test pool of all entity doc-
ument pairs irrespective of specific entity using KBAScore®
script provided by the TREC committee. More specifically,
we first scale the relevance scores of entity document pairs
in the testing set to [1, 1000]. Then, we compute predicted
positive and negative instances for each cutoff with a step to
all entities. Subsequently, we compute precision, recall and
F1 for each cutoff according to the ground truth. Finally, we
choose the highest F1 and corresponding precision and recall
as the measurements of the models.

6.4 Experimental setting

Except for the Sigmoid function used in the Output layer,
we use rectified linear units in other layers as non-linear acti-
vation functions. For the hyperparameters listed in Table 1,
we set dyin € {3, 4,5} with 128 filters each. We also fixed
batch_size = 64. The

y €{1.0,1.5,2.0,2.5,3.0,5.0,7.0, 10.0}

and

p €1{0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}

were directly chosen via a grid search. Training is done
through stochastic gradient descent over shuffled mini-
batches with Adam algorithm with learning rate /e — 3 using
TesnorFlow> platform.

6.5 Pre-trained word vectors

After cleaning the dataset by keeping ‘raw’ texts in Sect. 6.1,
we build a dictionary using the most common words in

4 http://trec-kba.org

> https://www.tensorflow.org
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Table 4 The top three semantically close words of given five words varying iteration steps

Iter Tuesday January government people email
Initialization Flashbacks Assistant Putsch Military-style Duraev
Month-over-month utm_medium=web Classic 1481 Shawne
Votel Thanks Dec Community ’Patriarch
50,000 Steps Beverage February Leader Don’t E-mail
Monday March Federal Them Share
Rodrigo November Window You Your
100,000 Steps Monday February Leader You E-mail
Friday March Federal Them Subscribe
Saturday April Window Dont Friend
150,000 Steps Monday February Federal Them E-mail
Friday March Authorities Person Subscribe
Wednesday April Displaying Dont Tweet
200,000 Steps Monday February Federal Citizens E-mail
Wednesday March Authorities Them Tweet
Friday April Displaying Americans Subscribe

the dataset with the length of 150,000. Then we represent
the entities and documents as sequence indices with the
dictionary, where words outside the dictionary are treated
as “unknown’ that is the first word in the dictionary. We
trained word vectors on the dataset defined in Sect. 6.1 using
the skip-gram model [33]. We run the skip-gram model 5
times with the dimensionality of word embedding (vector)
be {64, 128, 200, 250, 300} respectively.

In order to show pre-train word vector results semanti-
cally, we demonstrate the top 3 semantically closest words
for 5 given words including Tuesday, Januray, government,
people and email as shown in Table 4. For instance, the top 3
closest words of Tuesday are flashbacks, month-over-month
and votel at the initial, but the top 3 closest words of Tues-
day change to Monday, Wednesday and Friday at 200,000
iteration steps.

6.6 Experimental methodology

We conducted extensive comparison experiments. First, we
conducted SVM and CosSimilarity classifications using
doc2vec representation model in the dataset as our baselines.
Then, six variants of DeepJoED models are implemented
to evaluate the effectiveness of the proposed deep learning
architecture.

e D_DeepJoED. 1t is a variant of DeepJoED with pre-
trained vectors from word2vec. All words including the
unknown one are initialized by pre-trained vectors and
then updated during training.

@ Springer

S_DeepJoED. 1t is a variant of DeepJoED with pre-
trained vectors from word2vec. All words including the
unknown one are initialized by pre-trained vectors, yet
kept static, and only other variables of the model are
learned.

R_DeepJoED. 1t is a variant of DeepJoED without pre-
trained vectors. All words are randomly initialized and
then updated during training.

DR_DeepJoED. A variant of DeepJoED has two sets of
vectors. One is pre-trained vectors, and the other is ran-
domly initialized vectors. Each set of vectors is treated
as a "channel’ and each filter is applied to both channels.
All words are initialized using the pre-trained vectors and
random vector respectively. The two sets of vectors are
learned during training the network.

DS_DeepJoED. A variant of DeepJoED which has also
two channels. All words are initialized using pre-trained
vectors twice for two channels. Gradients are backprop-
agated only through one of the channels, and the other
channel are kept static.

SR_DeepJoED. 1t is a variant of DeepJoED with two
channels. All words are initialized using the pre-trained
and random vectors corresponding to the two channels.
Only random vectors are fine-tuned during training.
Dov2Vec_SVM. It is a SVM model using the dis-
tributed representations of the entity-document pairs
implemented by the skip-gram model [37] as input with
the dimensionality of 128. This model is a baseline.
Doc2Vec_CosSim. It is a simple cosine similarity base-
line model. The entities and documents are represented
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Table 5 The semantic features between entities and documents

Table 6 Overall results of evaluated methods

Feature Description

N(erer) The number of relevant entities occurs in e’s
profile page

N(d,e) The number of occurrences of e in document d

N, erer) The number of e’s related entity occurrences in
document d

FPOS(,e) First occurrence position of e in d

FPOS,,e) FPOS(d, e) normalized by the document length

LPOS(,e) Last occurrence position of e in d

LPOS,(d,e) LPOS(d, e) normalized by the document length

Spread(d, e)
Spread, (d, e)

LPOS(d,e) — FPOS(,e)
Spread(d, e) normalized by document length

Source(d) The source of document d
weekday(d) The weekday of document d published
burst(d) The burst weights of document d

as vectors implemented by the skip-gram model [37]
with the dimensionality of 128. The relevance score
of an entity-document pair is computed by cosine
function.

For reference, we also include three top-ranked approaches
on TREC-KBA-2012 dataset as baselines.

o 2-Step J48 [12]. It first detects documents from the stream
data that mention the target entity, and then classifies the
documents as central or not to the target entity using J48
decision tree classification approach.

e HLTCOE [8]. HLTCOE is a Support Vector Machine
classifier using bag-of-words and bag-of-entity-names
with binary features, representing whether or not a term
was present in a document, regardless of its frequency.

e Random forest [9]. It is a pointwise learning to rank
method implemented by Balog and Ramampiaro and
published in SIGIR 2013. It used a rich feature set
with 68 various hand-crafted features, and the learn-
ing to rank method obtained the best performances
compared to many other classification and ranking
approaches.

Moreover, we conduct an additional experiment that ver-
ifies the performance of embedding features combined with
conventional hand-crafted features. The experiment con-
catenates embedding features that the D_DeepJoED model
(which is the model with best performance with embedding
features only) learns at Interaction layer in the Fig. 1 with
conventional semantic features between entities and docu-
ments in the TREC-KBA-2012 dataset. The combined model
is called as D2HC_DeepJoED. The selected conventional
semantic features, which have been employed effectively in
the paper [8], are listed in Table 5.

Methods Central Only
Precision Recall F1

D_DeepJoED 0.387 0.578 0.464
S_DeepJoED 0.356 0.608 0.449
R_DeepJoED 0.369 0.532 0.436
D2HC_DeepJoED 0.386 0.602 0.470
DS_DeepJoED 0.332 0.601 0.428
DR_DeepJoED 0.349 0.648 0.454
SR_DeepJoED 0.358 0.556 0.436
Doc2Vec_SVM 0.291 0.616 0.395
Doc2Vec_CosSim 0.171 0.969 0.290
2-step J48 0.243 0.715 0.362
HLTCOE 0.310 0.527 0.391
Random forests 0.369 0.563 0.444

6.7 Results and discussion

The overall results of all the experimental approaches are
reported in Table 6. Note that six variants of DeepJoED have
the same 128 dimensionality of word embeddings.

In comparison to the baselines listed in the 4th block
of Table 6, all variants of DeepJoED achieve higher or
competitive F1 scores considerably. Compared with the
Dov2Vec_SVM and Doc2Vec_CosSim baselines, our best
D_DeepJoED with F1 scores in bold style in 2nd block
of Table 6 model improves F1 scores about 18% and
60%, respectively. Moreover, in contrast to the Dov2Vec_
SVM and Doc2Vec_CosSim baselines, our low DS_
DeepJoED model still increases F1 scores about 8% and 46%,
respectively. These results show our DeepJoED model can
capture more effective latent semantic features of entities and
documents than Doc2Vec which captures latent word level
semantic features.

In contrast to other baselines listed in the 5th block of
Table 6, which use handcraft features and powerful machine
learning models, our DeepJoED model achieves better results
in most cases. For 2-step J48 and HLTCOE, all variants of
DeepJoED achieve performance gains significantly. The top
D_DeepJoED model improve F1 scores about 5% against the
top baseline Random Forests. Note that these top baselines
leverage various human-designed features that are dedicate
to the task of CCR. These results show our DeepJoED model
can automatically capture latent semantic features in an end-
to-end fashion.

Due to the small size of the dataset, we initially hope
that the two channel variants of DeeJoED would prevent
over-fitting and thus perform better than single channel
variants of DeepJoED. The results are listed in 2nd and

@ Springer
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Table 7 Results for different dimensions

Methods Central Only

Dim Precision Recall F1
D_DeepJoED 64 353 .627 452
D_DeepJoED 128 .387 578 464
D_DeepJoED 200 391 .556 459
D_DeepJoED 250 .359 .588 446

3rd blocks of Table 6. From the results, we may con-
clude that the single channel DeepJoED is better. More-
over, DR_DeepJoED outperforms other two variants DR_
DeepJoED and SR_DeepJoED, this shows that the combina-
tion of pre-trained vectors of words and random vectors of
words is robust for DeepJoED.

For the single channel variants of DeeJoED listed in
the 2nd block of Table 6, S_DeepJoED outperforms R_
DeepJoED, and D_DeepJoED outperforms S_DeepJoED.
These results validate our expectations that (i) the pre-trained
vectors are good for DeepJoED, and (ii) the DeepJoED could
improve performance gains further when the pre-trained vec-
tors are fine-tuned during training.

In comparison with D_DeepJoED, D2HC_DeepJoED
with F1 scores in bold style in the 2th block of Table 6
achieves marginal performance gains, which uses the same
configurations of the deep networks as D_DeepJoED except
for the conventional semantic features concatenated by the
embedding features at the Interaction layer in the Fig. 1. This
result shows that D_DeepJoED have automatically learned
the semantic features between entities and documents that
already include the hand-crafted features listed in Table
5. Therefore, this result validates that the deep learning
approach can learn semantic features between entities and
documents in an end-to-end fashion.

6.8 Impact of word vector dimensionality

In this subsection, we show impacts on the DeepJoED by
varying dimension of word vectors. We select D_DeepJoED
as our reference model, and vary the dimensionality of word
vectors while the other settings of D_DeepJoED keeps the
same. The results with different dimensionality of word vec-
tors are listed in Table 7. From the results, it can be found that
there are no obvious differences in F1 scores when varying
the dimensionality of word vectors from 64 to 250. We may
conclude that 128 dimension of word vectors is enough for
CCR on the TREC-KBA-2012.

7 Conclusion

In this paper, we present a Joint Deep Neural Network Model
of Entities and Documents for CCR, termed as DeepJoED.

@ Springer

DeepJoED consists of six layers of neural networks. The
first four layers are two parallel neural networks sharing the
weights and bias, in which one network focuses on learning
entity latent semantic representations, and the other learns
document latent semantic representations. The fifth layer is
an interaction layer to couple the two networks together. The
last layer outputs the relevance score of an entity-document
pair. DeepJoED takes raw texts of entities and documents as
input, and it is learn through stochastic gradient descent over
shuffled mini-batches with Adam algorithm. This model has
a key point that it learns the distributed representations of
entity-document pairs automatically in an end-to-end fash-
ion, so the model can perform on-line learning.

An extensive set of experiments have been conducted
on the TREC-KBA-2012 dataset. The results show the
model outperforms the state-of-the-art results on the TREC-
KBA-2012. The results validate that DeepJoED can learn
distributed representation of entities and documents in paral-
lel, and interact with each other as well as effectively detect
central documents for a given target entity in KBs.

For our future work, we will explore more effective deep
learning models such as dependency based neural networks
using CNN and RNN, and incorporate the burst feature of
entities into the model to improve performance gains for
CCR.
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