
World Wide Web
https://doi.org/10.1007/s11280-018-0595-9

A novel temporal and topic-aware recommender model

Dandan Song1 ·Zhifan Li1 ·Mingming Jiang1 ·
Lifei Qin1 ·Lejian Liao1

Received: 27 February 2018 / Revised: 25 April 2018 / Accepted: 24 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Individuals’ interests and concerning topics are generally changing over time,
with strong impact on their behaviors in social media. Accordingly, designing an intelligent
recommender system which can adapt with the temporal characters of both factors becomes
a significant research task. Namely both of temporal user interests and topics are important
factors for improving the performance of recommender systems. In this paper, we suppose
that users’ current interests and topics are transferred from the previous time step with a
Markov property. Based on this idea, we focus on designing a novel dynamic recommender
model based on collective factorization, named Temporal and Topic-Aware Recommender
Model (TTARM), which can express the transition process of both user interests and rele-
vant topics in fine granularity. It is a hybrid recommender model which joint Collaborative
Filtering (CF) and Content-based recommender method, thus can produce promising rec-
ommendations about both existing and newly published items. Experimental results on two
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real life data sets from CiteULike and MovieLens, demonstrate the effectiveness of our
proposed model.

Keywords Recommender system · Collaborative filtering · Matrix factorization

1 Introduction

Nowadays recommender systems are playing an extremely important role for people to find
attractive items more accurately and efficiently. E-commerce or social websites such as
Amazon, MovieLens or Delicious collect historical ratings or comments of items to design
their own recommender systems. Making good recommendations to users is crucial for
achieving better use experience, promoting products, and enhancing business values.

Recently, approaches [1, 13, 19, 24] based on Collaborative Filtering (CF) [8] have
achieved big success in practice. However, the fact is user interests and relevant topics are
changing over time, which is illustrated in Figure 1. For user i, he has three different states
(i.e. Ui,t−1, Ui,t , Ui,t+1) at time step t − 1, t , t + 1, and at time step t − 1, he was interested
in data mining, information extraction and retrieval, then he focused on topic model and
natural language processing area, finally he turned to recommender system and social net-
works. Meantime, he paid attention to data mining all the time. Therefore, learning user’s
interests accurately contributes to the performance of recommender systems. As this fact,
those static CF methods usually can not track these variations and adjust to propose appro-
priate suggestions. Considering this drawback, many research strategies such as [6, 14, 45]
have been undertaken to introduce time feature into their methods. However, these previous
works infer user interests by decaying weights of instances according to time, or analyz-
ing their historical behaviors throughout the life span. However, they do not describe the

Figure 1 User interests drift over time
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interests transition process in fine granularity. Therefore, delicately modeling temporal tran-
sitions of user interests is of significant importance for recommender systems to provide
better personalized recommendation meeting individual user’s needs [39].

On another hand, user topic feature is also a crucial factor that influences the performance
of recommender systems. In the past decade, with the advent of user-driven social medias
that allow users to store resources (contents, bookmarks, comments, and others) and asso-
ciate them with personalized words, an army of topic-based models [16, 27, 40] have been
proposed. They implement probability-based methods such as pLSA [10] and LDA [2] to
extract latent topics from available contents in the user or object space and then produce rec-
ommendations [21, 52] or search results [53–55, 57, 59]. These methods achieve big success
in solving the cold-start problem generally suffered by CF-based methods and enhancing
performance of recommender systems. Therefore, it will be of imaginable significance to
analyze topics in fine-grained time steps and import the temporal topic information into our
temporal modeling of user interests for recommendation.

In order to take both above observational factors (temporal user interests and user topics)
into account, we propose a novel Temporal and Topic-Aware Recommender Model, namely
TTARM, to model the transition process of user interests and topics over time.

The main contributions of our work are summarized as follows.

– Supposing that an individual user’s current interests and topics are shifted from the
previous time step, we first propose a novel Temporal Recommender Model, namely
TRM, based on Joint Past-Present Decomposition and Collaborative Filtering with
Markov property to learn temporal trend of user interests.

– By defining dynamic topic similarity between users and items over time and incor-
porating it into TRM, we design a Temporal and Topic-Aware Recommender Model
(TTARM) with both temporal interests and topic information.

– We systematically conduct extensive experiments on two large real datasets from
CiteULike and MovieLens to evaluate the performance of our proposed model.
And experimental results demonstrate that our model consistently outperforms other
competitive methods.

The remaining of this paper is organized as follows. We review related methods in Section 2.
Then introduce the details of our proposed recommender model and its learning algorithms
in Section 3. We demonstrate the performance our model with a series of experiments and
discuss the results in Section 4. Finally, we make a conclusion and look into the future work
in Section 5. A preliminary version of this work has been published in BigComp 2018 [29].
Compared to the conference version, we refine the design process of our model, extend our
experiments and give equation derivations details in Appendix.

2 Related work

In this section, we review quite a few existing relevant research works, which focus on
temporal and topic-involved recommendation respectively.

2.1 Temporal recommendation

Many collaborative filtering based recommender algorithms, which incorporate temporal
feature, have been proposed. Typically, several methods [5, 46] based on tensor factoriza-
tion are developed to take time information into account. In [46], a Bayesian probabilistic
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tensor factorization model (BPTF) was proposed, ratings are represented as triples – (user,
item, time), then these triples are organized into a three-dimensional tensor, finally the ten-
sor is decomposed and ratings are predicted using the inner product of the latent factor
vector. Their experimental results demonstrated that BPTF performs better than other static
recommender methods on both Netflix and MovieLens datasets because they introduce time
feature into the recommender model. While Xiang et al. [44] argued that the time dimension
is a local effect and should not be compared cross all users arbitrarily in a recommender
system. Therefore, they proposed a Session-based Temporal Graph (STG) which incorpo-
rates temporal information to model long-term and short-term preferences simultaneously.
There is another time-based model called timeSVD++ [14], which is the state-of-the-art
temporal model for the Netflix. timeSVD++ can track the time changing behavior through-
out the life span of the data by incorporating latent temporal components into SVD++
[13], a famous collaborative filtering approach implemented by latent factor model. In
addition, [7, 9, 20, 30] also took the time information into account in their models respec-
tively. However, all the above methods do not depict the evolving process of user interests
over time.

Recently, in [51] Zhang et al. assumed that user preferences evolve gradually, user’s
current preference depends on his preference at previous time step. Based on this assump-
tion, they proposed temporal probabilistic matrix factorization (TMF) and its fully Bayesian
treatment model (BTMF), by incorporating a transition matrix into the conventional matrix
factorization methods. With the analogous consideration, Li et al. [18] defined the transition
of user interests in a way to let the user feature in previous time step be the Dirichlet prior of
that in the current time step. While we don’t make any distribution assumptions of the data,
thus our method is more adaptive to different kinds of situations. Additionally, they predict
rating scores of the items by users, different with our goal which is to make rankings and
recommend the top ranked items to users. And we model user interests’ drift over time by
introducing user previous preferences into current time step through collective factorization.

2.2 Topic-involved recommendation

A slice of collaborative filtering approaches incorporating topic features of users and items
arose to improve the cold start and rating sparse problem which generally exist in CF-based
recommender systems [12, 26, 31–38]. For instance, [42] proposed an algorithm for recom-
mending scientific articles by combining the merits of traditional collaborative filtering and
probabilistic topic model. Moreover, [50] proposed a location-content-aware topic model
called LCARS for recommendation by learning the interest of each user and the local pref-
erence of each city by capturing item co-occurrence patterns and exploiting item contents.
[48] proposed a probabilistic generative model, called social influenced selection (SIS), to
model user preferences in terms of a number of latent topics and to correlate the items with
users through these latent topics.

However, topics are generally evolving over time, which are not considered in those
static models. To address this issue, [49] proposed a temporal context-aware mixture model
(TCAM) to model users’ rating behaviors by taking into account user-oriented topics (intrin-
sic interests) and time-oriented topics (general public’s interests). Although this model
incorporates the public’s temporal interests and topics, the historical behaviors are analyzed
throughout the life span, whose intrinsic interests transition process is not described in fine
granularity. Conversely, we suppose users’ current interests and topics are shifted from the
previous time step, and with delicately modeling the temporal transitions of user interests
with a Markov property, the performance of recommender systems is to be improved.
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There are also some research conducted on spatial recommendations, which are inter-
esting and meaningful [3, 25, 47, 56, 58]. But they are out of the discussion scope of this
paper.

3 Method

In this section, we first propose problem formulation for recommendation in Section 3.1 and
then our Temporal Recommender Model (TRM) inspired by Joint Past-Present Decomposi-
tion Model (JPP) in Section 3.2. In Section 3.3, we employ Topic Model to learn dynamic
topic similarity between users and items, and then introduce this temporal topic feature into
TRM and derived our proposed model – Temporal and Topic-Aware Recommender Model
(TTARM). The learning algorithm and prediction are given in Sections 3.4 and 3.5.

3.1 Problem formulation of recommendation

Given a set of users U , and a set of items D. Let R be the matrix that contains all the ratings
that the users have assigned to the items, whose size is Nu × Nd (where Nu = |U | and
Nd = |D|).

The task of recommendation could be taken as predicting the missing ratings in R, which
can be considered as filling in the blanks such that the values would be consistent with the
existing ratings in the matrix. And the intuition behind using matrix factorization to solve
this problem is that there should be some latent features that determine how a user rates an
item.

Assume that there are Nf latent features, then the traditional matrix factorization task is
then to find two matrices P (whose size is Nu × Nf ) and Q (whose size is Nf × Nd ) such
that their product approximates R:

R ≈ P × Q (1)

3.2 Temporal recommender model

Joint Past-Present Decomposition Model, proposed by [41], is a time-based collective fac-
torization [28] algorithm for topic discovery and monitoring of evolving input streams.
Inspired by this model and [15], we proposed a novel Temporal Recommender Model,
which suppose that users’ current interests are transferred from the previous time step with
a Markov property, then express the transition process of user interests in fine granularity.

Assume a collection of user-item ratings arrives continuously in batches. Each batch is
represented by a data matrix R(t) of size N

(t)
u ×N

(t)
i , where N

(t)
u is the number of users and

N
(t)
i is the number of items at time step t .
Analogous to the Joint Past-Present decomposition model, we derive the present

decomposition at time t :
R(t) ≈ P (t)Q(t) (2)

where P (t) has a size of N
(t)
u × Nf and Q(t) has a size of Nf × N

(t)
i , with Nf represents

the number of latent factors. Obviously, P (t) measures the extent of interests that users have
on the corresponding factors, while Q(t) measures the extent to which items possess those
factors. Usually, Nf is much smaller than N

(t)
i .

However, user interests vary over time, so we assume that users’ Present interests (i.e.
P (t)) transmit from the previous interests (i.e. P (t−1)). Although the observation data
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is dynamic, we assume that user interests evolve smoothly during one time period, and
the current interests depend on the interests that appear in the previous time-slot, not
on the sequence of interests that preceded it. Therefore, it has a Markov property, and
correspondingly we derive the Past decomposition of R(t) at time t :

R(t) ≈ S(t)P (t−1)Q(t) (3)

with P (t−1) given. S(t) is a interest-transition matrix trying to capture how much the current
users’ interests distribution (P (t)) linearly transmits from the previous one (P (t−1)).

Accordingly, for each time step t , given R(t) and P (t−1), joint the above two decompo-
sitions, we derive:

{
R(t) ≈ P (t)Q(t)

R(t) ≈ S(t)P (t−1)Q(t) (4)

This model is a combination of Collaborative Filtering and Joint Past-Present decom-
position model, and we call it Temporal Recommender Model, namely TRM.

3.3 Topic-aware enhancement

The dynamic topic similarity between users and items is another crucial factor for users’
rating behaviors. By incorporating this property into the TRM (4), we obtain:

{
R(t) ≈ (1 − η)P (t)Q(t) + ηC(t)

R(t) ≈ (1 − η)S(t)P (t−1)Q(t) + ηC(t) (5)

where parameter η ∈ [0, 1] is used to balance the basic rating score and topic similarity
factor C(t). And C

(t)
ui (an element of matrix C(t)) denotes the topic similarity extent between

user u and item i at time step t , is defined below:

rClC
(t)
ui = W

(t)
u · W

(t)
i

|W(t)
u | · |W(t)

i |

=
( 1∑

j∈D
(t)
u

R
(t)
uj

∑
j∈D

(t)
u

(R
(t)
uj W

(t)
j )) · W

(t)
i

| 1∑
j∈D

(t)
u

R
(t)
uj

∑
j∈D

(t)
u

(R
(t)
uj W

(t)
j )| · |W(t)

i |
(6)

where |.| denotes norm of vector, D
(t)
u is the set of items that user u rated at time step t ,

and R
(t)
uj is the rating user u gived to item j at time step t . Thus we can define the topic

distribute of user u by calculating the average topic distribution of all items which user u

rated at time step t , refers to 1∑
j∈D

(t)
u

R
(t)
uj

∑
j∈D

(t)
u

(R
(t)
uj W

(t)
j ) in (6), where R

(t)
uj serves as the

weight of items’ topic influence on user u. And W
(t)
j is the topic distribution of item j at

time step t , which can be obtained by applying Topic Model, like pLSA [10] and LDA [2] ,
on items’ content.

We call (5) Temporal and Topic-Aware Recommender Model, namely TTARM. Obvi-
ously, it leads to Temporal Recommender Model when η = 0 and pure topic-oriented
recommender model when η = 1. The learning methods of TRM and TTARM are given in
Section 3.4.
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3.4 Derived algorithm

In order to learn Temporal and Topic-Aware Recommender Model, specific loss function
L(R(t);P (t); Q(t); S(t);P (t−1)) for (5) needs to be specified. Consulting the work in [41],
the following loss function is defined:

rClL = argmin
S(t),P (t),Q(t)

‖R(t) − [(1 − η)P (t)Q(t) + ηC(t)]‖2F

+ ‖R(t) − [(1 − η)S(t)P (t−1)Q(t) + ηC(t)]‖2F
+ α‖P (t)‖1 + β‖Q(t)‖1 + γ ‖S(t)‖1
+ λ‖S(t) − I‖2F
subject to P (t) ≥ 0,Q(t) ≥ 0, S(t) ≥ 0 (7)

where ‖.‖F represents the Frobenius norm and ‖.‖1 stands for the L1 norm. The temporal
regularization λ‖S(t) − I‖2F controls how much we want to bias the decomposition towards
P (t−1). Thus the λ parameter ∈ (0, ∞) balances present and past information; it quantifies
the extent to which the model is past (i.e. λ → ∞) or present oriented (i.e. λ → 0).

Our goal is to minimize the loss function in (7), but it is not convex for all parameters
P (t), Q(t), S(t) simultaneously. Learning from [17, 41], a local minimum for the objective
function could be reached using multiplicative updates.

First, considering the Karush-Kuhn-Tucker (KKT) first-order conditions applied to our
problem, we derive: ⎧⎨

⎩
P (t) � ∇P (t)L = 0, P (t) ≥ 0, ∇P (t)L ≥ 0
Q(t) � ∇Q(t)L = 0, Q(t) ≥ 0, ∇Q(t)L ≥ 0
S(t) � ∇S(t)L = 0, S(t) ≥ 0, ∇S(t)L ≥ 0

(8)

where � is the element-wise product.
According to the loss function in (7), the gradients for each parameter are derived

respectively:

lCl∇P (t)L = 2P (t)[(1 − η)2Q(t)Q(t)T + αI ]
− 2[(1 − η)R(t) − η(1 − η)C(t)]Q(t)T (9)

∇Q(t)L = 2(1 − η)P (t)T [ηC(t) + (1 − η)P (t)Q(t)]
+ 2(1 − η)P (t−1)T S(t)T

· [ηC(t) + (1 − η)S(t)P (t−1)Q(t)]
− 2(1 − η)(P (t)T + P (t−1)T S(t)T )R(t)

+ 2βQ(t) (10)

∇S(t)L = 2(1 − η)[(1 − η)S(t)P (t−1)Q(t) + ηC(t)]
· Q(t)T P (t−1)T + 2(λ + γ )S(t)

− 2[(1 − η)R(t)Q(t)T P (t−1)T + λI ] (11)

By substituting the corresponding gradients in (8), the following update rules are obtained:

P (t) = P (t) � [(1 − η)R(t) − η(1 − η)C(t)]Q(t)T

P (t)[(1 − η)2q(t)Q(t)T + αI ]
(12)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y = (1 − η){P (t)T [ηC(t) + (1 − η)P (t)Q(t)]
+ P (t−1)T S(t)T [ηC(t)

+ (1 − η)S(t)P (t−1)Q(t)]} + βQ(t)

Q(t) = Q(t) � (1 − η)(P (t)T + P (t−1)T S(t)T )R(t)

Y

(13)

⎧⎪⎪⎨
⎪⎪⎩

Z = (1 − η)[(1 − η)S(t)P (t−1)Q(t) + ηC(t)]
· Q(t)T P (t−1)T + (λ + γ )S(t)

S(t) = S(t) � (1 − η)R(t)Q(t)T P (t−1)T + λI

Z

(14)

And the update (12, (13), and (14) lead to Algorithm 1, which learns the Temporal and
Topic-Aware Recommender Model (TTARM). Obviously, by setting the parameter η = 0
in Algorithm 1, it degenerates to the learning algorithm for Temporal Recommender Model
(TRM), which doesn’t take users’ topics variation into account.
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3.5 Rating prediction

We propose Temporal Recommender Model and Temporal and Topic-Aware Recommender
Model in Sections 3.2 and 3.3, and they are learned in Section 3.4, and TTARM’s rating
prediction equation is inferred as follows:

R̂
(t)
ui = (1 − η)P (t)

u Q
(t)
i + ηC

(t)
ui (15)

where P
(t)
u and Q

(t)
i are the weight distribution vectors on latent factors for user u and item

i respectively, which are learned by Algorithm 1.
In (15), by setting η = 0, we get the following rating prediction equation for TRM:

R̂
(t)
ui = P (t)

u Q
(t)
i (16)

4 Experiments

In this section, to demonstrate the performance of our proposed recommender model, exten-
sive experiments are conducted and results are analyzed. At first, we introduce the datasets,
evaluation metrics and experimental settings, then present the main findings.

4.1 Datasets

We evaluate our method and comparative methods on two large real life datasets — CiteU-
Like1 andMovieLens2.

– CiteULike. This dataset is collected from CiteULike, which is a Web service allows
users to save and share citations to academic papers. And the related articles’ abstracts
are provided by [42]. The time span is from November 4th in 2004 to April 16th in
2014. After merging duplicate articles, empty articles, users with library’s size fewer
than 10, articles with number of “like” users fewer than 10 are removed. The statistics
of preprocessed experimental dataset are listed in Table 1.

For each user-article pair, we generate a tetrad — (user id, article id, score, time),
where the score is always 1, for we suppose user likes the article when he collects it
in his library. Therefore, the rating matrix at time t is composed through the definition
below:

R
(t)
ij =

{
1 if article j is in user i’s library at time t
0 other

(17)

– MovieLens. Ratings in this dataset are collected from MovieLens website, which can
make personalized movie recommendations to users and every user can give a rating
to all movies. There are 2113 users, 9801 items and 824600 ratings(varying from 1
to 5) from Nov.1997 to Dec.2008 in this dataset. It’s very sparse, therefore similar to
CiteULike dataset we remove items which were tagged by less than 10 users and users
who tagged less than 10 items. The resulting dataset’s statistics are listed in Table 1.

1http://www.citeulike.org/faq/data.adp
2http://www.grouplens.org/node/12

http://www.citeulike.org/faq/data.adp
http://www.grouplens.org/node/12
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Table 1 Statistics of the CiteULike dataset

Dataset CiteULike MovieLens

#Rating 109,052 814,589

#User 3386 2113

#Item 7695 6624

#Avg. user-tag 32.20 385.5

#Avg. item-tagged 14.17 122.97

Sparse rate 99.58% 94.18%

Timespan 2004.11-2014.4 1997.11 − 2008.12

4.2 Evaluation metrics

For each user u, we predict his ratings at items which he has not rated before the current
time step t , then sort these ratings descendingly, and recommend the top-k items to him. If
a recommended item is liked by the user u at time step t according to the test set, we call it
a “hit” item, otherwise it’s a “miss” item [49]. In order to evaluate the experimental results
more legitimately, for each user u we define three well-known metrics as follows:

Recall@k = N(hits)

N(items)

where N(hits) is the number of “hit” items in the top-k recommended items, N(items)

is the number of all items in the test set of user u. Obviously, a high recall with lower k

indicates a better recommender system.
Concerning that Recall can not reflect the position importance of “hit” items in the ranked

list, we also use NDCG@k, a widely used metric in information retrieval, which is defined
as:

NDCG@k = 1

IDCG
×

k∑
i=1

2ri − 1

log(i + 1)

where ri is 1 if the item at position i is a “hit” item and 0 otherwise. IDCG is chosen for the
purpose of normalization so that the perfect ranking has an NDCG value of 1 [49].

The metrics defined above are all user-oriented. Therefore, metric for the entire rec-
ommender system can be summarized using the average metric value of all users, defined
below:

Metric@k =
∑N

i=1Mi@k

N

where N is the number of users, Mi@k is the metric value for user i at position k, and
metric refers to Recall, NDCG.

4.3 Comparative methods

In order to analyze the performance of our proposed models, we design the comparison
experiments between the following methods, including TRM (in Section 3.2) and TTARM
(in Section 3.3).
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– BPMF. A fully Bayesian treatment of the Probabilistic Matrix Factorization
(PMF [22]) model in which model capacity is controlled automatically by integrating
over all model parameters and hyperparameters [24].

– timeSVD++. A temporal recommender model which extends the SVD++ [13] by
introducing a time-variant bias for each user and item at every individual time step.

– WALS. A simple extension for Alternating Least Squares (ALS) where each user/item
pair has an additional weight, which is a tensor algorithm since besides of the rating it
also maintains a weight for each rating [11].

– TensorALS. A temporal recommender algorithm based on tensor factorization and
alternating least squares, which considers time step as the third dimension [5].

– BTMF. A temporal bayesianprobabilisticmatrix factorizationmodel (BTMF) [51],which
incorporates a transition matrix into the conventional matrix factorization methods.

– TRM. The Temporal Recommender Model proposed in Section 3.2 of this paper
without topic feature, learning by Algorithm 1 with parameter η = 0.

– TTARM. The Temporal and Topic-Aware Recommender Model proposed in Section 3.3
of this paper, also learnt by Algorithm 1, while the parameter η ∈ (0, 1) implies a
combination of temporal

user interests and topics.

4.4 Experimental setup

For each dataset, we create 10 time steps by splitting ratings yearly, merging extra rat-
ing to closest time step, and the distributions of ratings are shown in Figure 2. Obviously,
the CiteULike dataset is more sparse than the MovieLens dataset, and at time step 10, the
two datasets both have very few ratings. TTARM can only run on CiteULike dataset since
MovieLens dataset doesn’t have items’ content information and TTARM is a content-based

Figure 2 CiteULike and MovieLens datasets’ rating distribution on 10 time steps
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model. In addition, we set the number of latent factors D to be 20 for all latent factor
models participate in competition. The parameter λ is set to be 10 for TRM and TTARM,
and the topic balance parameter η is set to be 0.3 and topic number is set to be 50 for
TTARM. Other parameters related to norm in loss function are set to be 0.05. According
to Sections 3.2 and 3.3, both TRM and TTARM are launched by given the P (t−1) matrix.
Therefore, in order to acquire a bootable P (t−1) we apply Non-negative matrix factoriza-
tion (NMF) at the first time step, and launch all comparative models at the second time step.
That is why we only show the performance for time steps 2 to 10.

In order to reduce the variance of all models’ performance estimates, 5-fold cross-
validation is adopted. Similar to the work in [42], the splitting method is that for each item,
its related ratings at time step t is split into 5 folds. Thus for each time step t , we split the
ratings appearing at that time into 5 folds, and iteratively consider each fold as the test set
and the others as training set. After iteratively applying all the comparative models to the
relevant 5-folds training set and test set, the mean performance in terms of the evaluation
metrics is respectively calculated. In addition, for each experiment on models, we run 5
times with same parameters and calculate the mean value and standard error for the purpose
of gaining more convincing experimental results. Top-k items are recommended, accord-
inglyMetric@k is evaluated, namely NDCG@k, Recall@k. In practice, recall is very useful
in recommender systems since it takes a global view on all items and a high recall indeed
reflects user’s adoption [51]. And NDCG is also very effective and significant for appraising
the performance of Recommender Systems.

4.5 Experimental results

The experimental results of all comparative models on MovieLens and CiteULike dataset
are shown in Figures 3 and 4 with Recall@300 and NDCG@300 from time step 2 to 10.
It is obvious that both our TRM and TTARM outperform the other comparative recom-
mender models (i.e. BPMF, timeSVD++, TensorALS, BTMF and WALS) consistently in
the evaluation metrics. This comparison result is an indication of how temporal feature of
user interests can remarkably contribute to the performance of recommender system. The
fact that TTARM outperforms TRM at all time steps implies that incorporating the temporal
topic similarity between users and articles into our model achieves great success. Moreover,

(a) Recall@300 (b) NDCG@300

Figure 3 Metric@300 on MovieLens dataset
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(a) Recall@300 (b) NDCG@300

Figure 4 Metric@300 on CiteULike dataset

(a) Time step 2 (b) Time step 3

(c) Time step 4 (d) Time step 5

Figure 5 Recall@k for all comparative models on CiteULike dataset at time step 2–5 and vary k from 3 to
1000. Higher values are better



World Wide Web

the introduction of similarity between topics benefits solving the cold start problem and the
sparsity of dataset.

In Figure 4, TTARM and TRM’s performance decreases at time steps 2–5 and rises
after time step 6, while WALS, timeSVD++, BPMF’s performance decreases almost across
all time steps, BTMF and TensorALS’s recall performance rises after time step 6. And in
Figure 3, TRM decreases a little from time step 2 to 8 and rises afterward and BTMF has the
similar trend across time steps. In addition, timeSVD++ beats other comparative methods
at most time steps, and BTMF starts to show its performance after time step 7. Over-
all, our models (i.e., TRM and TTARM) show their steady and much better performance,
which demonstrate the distinguishing ability of our methods in learning and predicting the
variations of user interests and topics.

In details, Figures 5, 6, 7, and 8 show results at 2–5 time steps, whose experimental
results are similar. In each figure, there are four subfigures respectively demonstrate mod-
els’ performance at time step 2–5, and the x axis is the k in Recall@k and NDCG@k. From
the results, we can find that for each method, the trend of its performance over time is anal-
ogous under the two metrics, which contributes to the authorities of experimental results.
It is obvious that both our TRM and TTARM outperform the other recommender models
(i.e. BPMF, timeSVD++, TensorALS, BTMF and WALS) consistently in terms of the two

(a) Time step 2 (b) Time step 3

(c) Time step 4 (d) Time step 5

Figure 6 NDCG@k for all comparative models on CiteULike dataset at time step 2–5 and vary k from 3 to
1000. Higher values are better
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(a) Time step 2 (b) Time step 3

(c) Time step 4 (d) Time step 5

Figure 7 Recall@k for all comparative models on MovieLen dataset at time step 2–5 and vary k from 3 to
1000. Higher values are better

evaluation metrics (i.e., NDCG@k and Recall@k). This comparison result is an indication
of how temporal feature of user interests can remarkably contribute to the performance of
recommender system. The fact that TTARM outperforms TRM at all time steps implies that
incorporating the temporal topic similarity between users and items into our model achieves
great success. Moreover, the introduction of similarity between topics benefits solving the
cold start problem and the sparsity of dataset.

TensorALS and WALS’s performance is very close and better than timeSVD++, BPMF
and BTMF on CiteULike dataset at time step 2–5 since they both are based on alternat-
ing least squares method (ALS). However, timeSVD++ beats TensorALS and WALS on
MovieLens dataset. This phenomenon indicates that timeSVD++, TensorALS andWALS’s
performance depends on dataset more or less. Simultaneously, static methods, like BPMF,
simply use all previous ratings will dismiss user interests’ transmit over time step and
performs not that well in our experiments.

TTARM beats all other methods both in Figures 5 and 6 on the CiteULike dataset. The
items in this dataset are research articles, which have tight relation with topics, hence incor-
porating topic to TTARM contributes a lot. However, our proposed model TRM which
doesn’t introduce topic feature beats all other models under both metrics and datasets as
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(a) Time step 2 (b) Time step 3

(c) Time step 4 (d) Time step 5

Figure 8 NDCG@k for all comparative models on MovieLen dataset at time step 2–5 and vary k from 3 to
1000. Higher values are better

well. These evidences suggest that considering the effect of temporal information and topic
features contributes to the performance of recommendation.

We also investigate the trend of comparative models’ performance under NDCG by
adjusting the number of recommendations, i.e., the parameter k in NDCG@k. Figure 6
shows the influence of k on the seven comparative models by considering NDCG@k on
CiteULike dataset. We can see that at time steps 2–5 when the parameter k grows, the per-
formance of our TTARMmodel is stable, while TRM and all comparative methods increase
slightly, illustrating that their recommended items are becoming accurate in ranks, as NDCG is
related with the position of “hit” items in the ranked list. Figure 8 shows six models’
NDCG@kperformanceonMovieLens dataset at time steps 2–5.Weobserve thatwith k grow-
ing, TRM’s performance trends to a stable status, while other models increase all the time.

In Table 2, we show comparative models’ NDCG@100 performance on CiteULike
and MovieLens datasets at time steps 2-6. The boldface and italic highlight the best and
second best performers, respectively. Each value in this table is the mean value and standard
error, which calculated by running 5 times experiments with same parameters. On CiteU-
Like dataset, our TTARM model performs best since it introduces the topic feature of items
and can track user interests over time. Moreover, TRM beats other comparative methods all
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Table 2 NDCG@100 Performance (mean± standard error) comparison of TRM, TTARM and comparative
methods. The best performer is in boldface and the second is in italic. These experimental mean, standard
error results are statistics on 5 times experiments with same parameters

Algorithm Time step 2 Time step 3 Time step 4 Time step 5 Time step 6

CiteULike

BPMF 0.0161 ± 0.0040 0.0104 ± 0.0024 0.0089 ± 0.0040 0.0078 ± 0.0003 0.0075 ± 0.0004

timeSVD++ 0.0144 ± 0.0018 0.0211 ± 0.0009 0.0104 ± 0.0008 0.0117 ± 0.0005 0.0117 ± 0.0015

WALS 0.1316 ± 0.0092 0.1008 ± 0.0070 0.0924 ± 0.0005 0.0942 ± 0.0102 0.0700 ± 0.0069

TensorALS 0.0856 ± 0.0029 0.0589 ± 0.0039 0.0613 ± 0.0043 0.0535 ± 0.0032 0.0454 ± 0.0074

BTMF 0.0386 ± 0.0000 0.0462 ± 0.0000 0.0442 ± 0.0000 0.0425 ± 0.0000 0.0637 ± 0.0000

TRM 0.3535 ± 0.0017 0.2537 ± 0.0019 0.2358 ± 0.0044 0.1874 ± 0.0023 0.2212 ± 0.0020

TTARM 0.7013 ± 0.0000 0.6805 ± 0.0000 0.6967 ± 0.0000 0.6788 ± 0.0000 0.6610 ± 0.0000

MovieLens

BPMF 0.1231 ± 0.0015 0.1133 ± 0.0023 0.1096 ± 0.0023 0.0810 ± 0.0018 0.0751 ± 0.0037

timeSVD++ 0.2156 ± 0.0000 0.1996 ± 0.0000 0.2197 ± 0.0001 0.2385 ± 0.0001 0.2044 ± 0.0000

WALS 0.2008 ± 0.0022 0.1285 ± 0.0026 0.1193 ± 0.0010 0.0965 ± 0.0022 0.0732 ± 0.0011

TensorALS 0.1125 ± 0.0035 0.0988 ± 0.0016 0.0950 ± 0.0026 0.0721 ± 0.0038 0.0586 ± 0.0026

BTMF 0.1278 ± 0.0006 0.2132 ± 0.0044 0.1281 ± 0.0196 0.1172 ± 0.0049 0.1341 ± 0.0027

TRM 0.3966 ± 0.0032 0.4061 ± 0.0024 0.3943 ± 0.0032 0.3781 ± 0.0016 0.3469 ± 0.0020

the time. And TTARM can not run on MovieLens dataset for it needs items’ content infor-
mation, which this dataset doesn’t involve. However, our TRM model also achieve the best
performance. In addition, timeSVD++ performs much better than BPMF, WALS, Tensor-
ALS and BTMF at time step 2, 4, 5, 6. However, BTMF beats timeSVD++ at time step 3.

In summary, the proposed TTARM and TRM outperform comparative models in most
cases. Our models can learn user interests and topic feature very accurately and this fact
contributes to the performance of recommender system.

4.6 Parameter study

In the our models’ learning process introduced in Section 3.4, the parameter λ ∈ (0,∞) is
used to balance the model between past and present factors. In order to study the impact of
λ on the performance of our proposed model, we conduct experiments with a set of λ values
on TRM (i.e., set η = 0 in TTARM). The results are shown in Figure 9, where the Recall@3
and NDCG@3 are their mean value on all time steps. Through Figure 9, we can see that
TRM performs best when λ is set to be 100, when past and present oriented information is
balanced.

In addition, η ∈ [0, 1] is also a crucial parameter in TTARM, as it is used to adjust
the weight of topic feature in TTARM. Consequently a series of experiments about η are
designed. Similar to parameter λ, we calculate the performance of TTARM under different
η with the mean Recall@3 and NDCG@3 value on all time steps. The results are shown
in Figure 10. And from Figure 10, we can see that TTARM works best when η is set to
be 0.3-0.6. Furthermore, the performance shows a sharp decline when η < 0.3 or η > 0.6
and almost not change when η > 0.3 and η < 0.6. This phenomenon explains that both
temporal user interests and dynamic topic similarity are crucial factors in our proposed
model, overweight or underweight their contributions will hamper the effectiveness of our
proposed model.
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(a) Recall@3 (b) NDCG@3

Figure 9 λ study

We also study the impact of latent factors’ number D on our proposed model TTARM.
The experiments with different D are conducted on CiteUlike dataset and we evaluate the
performance of TTARM under different D with the mean Recall@3 and NDCG@3 value
on all time steps. The results in Figure 11 show that variation of D has little effect on Recall
but NDCG decreases a bit with the rise of D. Therefore increasing parameter D can not
make a better performance, but increase model’s compute complexity on the contrary.

5 Conclusions and future work

In this paper, we propose a Temporal and Topic-Aware Recommender Model, namely
TTARM, based on collective factorization to model temporal user interests and dynamic
topic similarity over time for the purpose of making a better recommendation at current
time. When only considering the temporal information, Temporal Recommender Model
(TRM) is a special case of TTARM, and it is a dynamic collaborative filtering recommender
model. After incorporating topic similarity, the designed TTARMmethod is a hybrid recom-
mender model which joints Collaborative Filtering (CF) and Content-based recommender

(a) Recall@3 (b) NDCG@3

Figure 10 η study
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(a) Recall@3 (b) NDCG@3

Figure 11 Latent factor number study

methods and can form promising recommendations about both existing and newly published
items. By applying on two large datasets (i.e. CiteULike and MovieLens), our proposed
model outperforms competitive recommender algorithms, which demonstrates that temporal
user interests and topic similarity features are crucial factors in recommender systems.

There are still several factors worthy of taking into account in the future. Referring to
[49], user interests can be divided into user intrinsic and public interests in TTARM in the
future. In addition, learning parameters automatically, incorporating the social information
between users into TTARM, and visualization of user interests and dynamic topics are also
very interesting works. There are also other possible ways to help with recommendation
system. In addition to using collaborative filtering or using topic model features, work like
automatically generated lexicons could also help with recommendation systems [4, 23, 43].
We will study them in the future.
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Appendix: Derivation of Gradient Equation

Suppose R = [Rij ]m×n, P = [Pij ]m×k,Q = [Qij ]k×n, C = [Cij ]m×n.

‖R(t) − [(1 − η)P (t)Q(t) + ηC(t)]‖2F
= tR{{R(t) − [(1 − η)P (t)Q(t) + ηC(t)]}T

{R(t) − [(1 − η)P (t)Q(t) + ηC(t)]}}
= tR{{R(t)T − [(1 − η)Q(t)T P (t)T + ηC(t)T ]}

{R(t) − [(1 − η)P (t)Q(t) + ηC(t)]}}
= tR(R(t)T R(t)) − 2tR{[(1 − η)Q(t)T P (t)T + ηC(t)T ]R(t)}

+ tR{[(1 − η)Q(t)T P (t)T + ηC(t)T ][(1 − η)P (t)Q(t) + ηC(t)]}
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= tR(R(t)T R(t)) − 2[(1 − η)tR(Q(t)T P (t)T R(t)) + ηtR(C(t)T R(t))]
+ (1 − η)2tR(Q(t)T P (t)T P (t)Q(t))

+ 2η(1 − η)tR(Q(t)T P (t)T C(t))

+ η2tR(C(t)T C(t)) (18)

Then we derive:

∇P (t)L = ∇P (t)‖R(t) − [(1 − η)P (t)Q(t) + ηC(t)]‖2F + ∇P (t)α‖P (t)‖2F
= −2(1 − η)R(t)Q(t)T + 2(1 − η)2P (t)Q(t)Q(t)T

+ 2η(1 − η)C(t)Q(t)T + 2αP (t)

= 2P (t)[(1 − η)2Q(t)Q(t)T + αI ]
− 2[(1 − η)R(t) − η(1 − η)C(t)]Q(t)T (19)

Similarly we can derive the other two gradient equation as follows:

∇Q(t)L = ∇Q(t)‖R(t) − [(1 − η)P (t)Q(t) + ηC(t)]‖2F
+ ∇Q(t)‖R(t) − [(1 − η)s(t)P (t−1)Q(t) + ηC(t)]‖2F
+ ∇Q(t)β‖Q(t)‖2F

= 2(1 − η)[−P (t)T R(t) + ηP (t)T C(t) + (1 − η)P (t)T P (t)Q(t)]
+ 2(1 − η)[−P (t−1)T s(t)T R(t) + ηP (t−1)T s(t)T C(t)

+ (1 − η)P (t−1)T s(t)T s(t)P (t−1)Q(t)] + 2βQ(t)

= 2(1 − η)P (t)T [ηC(t) + (1 − η)P (t)Q(t)]
+ 2(1 − η)P (t−1)T s(t)T [ηC(t) + (1 − η)s(t)P (t−1)Q(t)]
− 2(1 − η)(P (t)T + P (t−1)T s(t)T )R(t) + 2βQ(t) (20)

∇s(t)L = ∇s(t)‖R(t) − [(1 − η)s(t)P (t−1)Q(t) + ηC(t)]‖2F
+ ∇s(t)γ ‖s(t)‖2F + ∇s(t)λ‖s(t) − I‖2F

= 2(1 − η)[−R(t)Q(t)T P (t−1)T

+ (1 − η)s(t)P (t−1)Q(t)Q(t)T P (t−1)T

+ ηC(t)Q(t)T P (t−1)T ] + 2γ s(t) + 2λ(s(t) − I )

= 2(1 − η)[(1 − η)s(t)P (t−1)Q(t) + ηC(t)]Q(t)T P (t−1)T

+ 2(λ + γ )s(t)

− 2[(1 − η)R(t)Q(t)T P (t−1)T + λI ] (21)
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