Knowl Inf Syst @ CrossMark
https://doi.org/10.1007/s10115-018-1155-4

REGULAR PAPER

Answering why-not questions on SPARQL queries

Meng Wang! . Jun Liu! . Bifan Wei! - Siyu Yao! -
Hongwei Zeng! - Lei Shi!

Received: 14 March 2017 / Revised: 18 November 2017 / Accepted: 5 January 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract SPARQL, the W3C standard for RDF query languages, has gained significant pop-
ularity in recent years. An increasing amount of effort is currently being exerted to improve
the functionality and usability of SPARQL-based search engines. However, explaining miss-
ing items in the results of SPARQL queries or the so-called why-not question has not received
sufficient attention. In this study, we first formalize why-not questions on SPARQL queries
and then propose a novel explanation model, called answering why-not questions on SPARQL
(ANNA) to answer why-not questions using a divide-and-conquer strategy. ANNA adopts
a graph-based approach and an operator-based approach to generate logical explanations at
the triple pattern level and the query operator level, respectively, which helps users refine
their initial queries. Extensive experimental results on two real-world RDF datasets show
that the proposed model and algorithms can provide high-quality explanations in terms of
both effectiveness and efficiency.

Keywords Why-not - SPARQL - RDF graph - Query - Graph pattern

<X Meng Wang
wangmengsd @stu.xjtu.edu.cn

Jun Liu
liukeen @xjtu.edu.cn

Bifan Wei
weibifan @mail.xjtu.edu.cn

Siyu Yao
cheryl @stu.xjtu.edu.cn

Hongwei Zeng
zhw1025@gmail.com

Lei Shi
Xjtushilei @ foxmail.com

I MOEKLINNS Lab, Xi’an Jiaotong University, Xi’an, China

Published online: 19 January 2018 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1155-4&domain=pdf

M. Wang et al.

1 Introduction

Users always have expectations for query results. They feel frustrated when the result is
empty or the result does not contain the expected items. Hence, a user would naturally pose
a why-not question on why some items do not show up in the result set. Answering why-not
questions helps users clarify their information needs and refine their initial queries.
Existing efforts to answer why-not questions mainly focus on the area of relational queries
[3,7,8,16,18-20,23,33]. However, no investigation has been conducted on RDF datasets.

1.1 Why-not questions on SPARQL queries

Querying large collections of RDF datasets, such as Linked Data,! has gained significant
popularity in recent years. SPARQL [17] has become the de facto standard query language
in this domain. Why-not questions also occur during SPARQL querying, as illustrated in
Example 1.

Example 1 A user wants to find all films directed by Tim Burton since 1990. After posing a
SPARQL query Q; over DBpedia,” the user finds that the famous film Batman is not in the
result set, as shown in Fig. 1. Consequently, the user may issue a why-not question, i.e., why
Batman does not appear in the result set.

The answer to this why-not question could be that the film is not in DBpedia, the film is
not directed by Tim Burton, the film is released before 1990, or a bug exists in the SPARQL
query processing engine. Worse, even if the user asks another similar question, e.g., why The
Nightmare Before Christmas does not appear in the result set, the reason may be different
from the former.’

Faced with such why-not questions, users have no idea which parts of the query should
be responsible for the missing items. Users experience difficulty sifting their initial SPARQL
queries. We refer to this problem as answering why-not questions on SPARQL queries. In
this study, we focus on this problem.

1.2 Limitations of existing explanation models

Existing explanation models that answer why-not questions fall into three categories, namely
instance based [19,20], operator based [3,7] and query refinement based [8,16,18,23,33].

Instance-based models Instance-based models focus on the data in relational databases
[19,20], which illustrate how the data source should be updated if users want missing items to
appear in the result set. For example, in our missing-Batman example, by modifying Batman’s
release date /989 to an arbitrary value satisfying value > 1990 or changing Big Fish’s film
name in the database to Batman, Batman will appear in the result set.

RDF datasets have no definite schema or centralized data design; therefore, computing all
instance-based explanations may be impossible for instance-based models.

Operator-based models Operator-based models generate explanations for why-not ques-
tions by identifying which query operators eliminate the missing items from the result set
[3,7]. These models also focus on relational queries, such as Select-Project-Join-Union-
Aggregation (SPJUA) queries [3], which are based on relational algebra.

1 http://linkeddata.org.
2 http://wiki.dbpedia.org.

3 Batman was released in 1989. The Nightmare Before Christmas was written and produced by Tim Burton,
but its director was Henry Selick.

@ Springer

http://linkeddata.org
http://wiki.dbpedia.org

Answering why-not questions on SPARQL queries

SELECT ?filmname ?date ?filmname ?date
WHERE { “Corpse Bride” 2006
FILTER{ ?date > “1990” } “Edward Scissorhands” | 1990
?film name ?filmname. “Planet of the Apes” 2001
?film director ?person. “Big Fish” 2003
?film released ?date. “Batman Returns” 1992
?person name “Tim Burton” . “ Alice in Wonderland” | 2010
j : “Batman” ? :
(@) (b)

Fig. 1 SPARQL query and result set for Example 1. a SPARQL query Q. b Query result

SPARQL query operators are based on SPARQL algebra [28]. The fundamental dif-
ferences between SPARQL algebra and relational algebra make operator-based models
unsuitable for SPARQL queries. Firstly, the notion of so-called mappings [28] is central
to the evaluation process of SPARQL instead of tuples in the SQL evaluation process [3].
Secondly, if the why-not question is caused by inappropriate parts of the basic graph patterns
(BGPs) of the SPARQL query, operator-based models would always output JOIN as the
explanation, and they cannot tell users which parts of BGPs are responsible for excluding
expected items.

Query refinement-based models Query refinement-based models tell users how to refine
their original queries so that the missing items can return to the result. Nonetheless, why-not
questions are query dependent [16], and a query refinement-based model is only applicable
to a certain class of queries.

For instance, the model in [33] focuses on refining the constraints in SPJUA queries to
recover missing items. For top-k queries, the model in [18] makes the missing items appear
in the result set by changing the value k of the top-k query or users’ preference weights on
attributes of the dataset. Other existing works can answer why-not questions on reverse top-k
queries [16], spatial keyword top-k queries [8] and reverse skyline queries [23]. None of the
existing models can be applied directly to SPARQL queries.

1.3 Overview of ANNA

Answering why-not questions on SPARQL queries has the following three main challenges:

Why-not reasons RDF graphs are labeled directed graphs and SPARQL is essentially a
graph-matching query language [28]. The evaluation of a SPARQL query mainly includes
(1) matching graph patterns against the input RDF graph and (2) applying SPARQL algebraic
operations in the matching process. Determining the parts that are responsible for excluding
users’ expected items is challenging. It necessitates understanding the semantics of the why-
not questions on SPARQL queries to analyze underlying reasons and to compute what is
necessary for the missing items to appear in the result.

Effectiveness We need to guarantee that explanations are effective. One straightforward
method is employing query relaxation models to recover the missing items and to return
the relaxed queries as explanations. However, existing relaxation models only cover the

@ Springer

M. Wang et al.

conjunctive queries and do not consider inappropriate directions of edges in SPARQL graph
patterns.

Efficiency Finding inappropriate parts in the initial SPARQL query needs an examination
of the matching process between the graph pattern and the input RDF graph in a linear
fashion way [34]. This process may lead to an exhaustive search [30]. Therefore, the efficient
computation of why-not explanations is challenging and non-trivial.

To address the above challenges, we designed a novel explanation model called ANNA*
(Answering why-Not questioNs on SPARQL). The procedure of ANNA mainly includes the
following:

(i) ANNA computes a basic graph pattern from the SPARQL query, which is for the
matching against the input RDF graph and is a necessity for missing items to appear,
then ANNA examines the result of graph pattern matching and identifies the query level
where the absence of the expected items occurs, i.e., the triple pattern level or the query
operator level.

(ii) If the absence occurs at the triple pattern level, ANNA will detect both inappropriate
directions and RDF terms by using a graph-based approach and generate a modified
graph pattern. The expected items will be returned to the query result by matching the
modified graph pattern against the input RDF graph. Then, the modified graph pattern
will be utilized as an explanation.

(iii) If the absence occurs at the query operator level, ANNA will trace the expected items
on the query parse tree through a post-order traversal. To save computation time, only
questionable operators will be examined during the traversal. By comparing expected
items with the result of each questionable operator, ANNA will detect inappropriate
operators that filter out expected items and return the operator and the corresponding
conditions to users as an explanation.

1.4 Contributions and organization
The main contributions of this study are threefold.

(1) We first formalize why-not questions on SPARQL queries and reveal their semantics.

(ii)) We propose a novel explanation model, ANNA, to answer why-not questions on
SPARQL queries. We propose algorithms for ANNA to generate explanations at dif-
ferent query levels using a divide-and-conquer strategy.

(iii) We conducted extensive experiments on two real-world RDF datasets (LinkedMDB?
and DBpedia®) to confirm the effectiveness and efficiency of ANNA. Experimental
results show that effective explanations for why-not questions can be generated within
an acceptable time at both triple pattern and query operator levels.

The remainder of this paper is organized as follows: Related work is discussed in Sect. 2.
The why-not question on SPARQL queries is formalized in Sect. 3, and the underlying
reasons are analyzed in Sect. 4. Section 5 presents the framework of the proposed model, and
the details about how explanations are generated. The evaluation of the model is reported in
Sect. 6. Finally, the conclusions and the future work are presented in Sect. 7.

4 A demo system of ANNA has been presented at ISWC 2015.
5 http://queens.db.toronto.edu/~oktie/linkedmdb/.
6 http://wiki.dbpedia.org/Datasets, released in September, 2015.

@ Springer

http://queens.db.toronto.edu/~oktie/linkedmdb/
http://wiki.dbpedia.org/Datasets

Answering why-not questions on SPARQL queries

2 Related work

To the best of our knowledge, no model has addressed why-not questions on SPARQL queries.
We briefly discuss the research efforts related to our work in the following aspects: explanation
models for why-not questions, query relaxation for RDF data, inconsistency-tolerant query
answering and provenance for SPARQL queries.

2.1 Explanation models for why-not questions

As introduced in Sect. 1.2, three types of models can be used to answer why-not questions:
instance-based models [19,20], operator-based models [3, 7] and query refinement-based
explanation models [8,16,18,23,33].

Recently, answering why-not questions has also received attention in other research fields.
Bhowmick et al. [2] and Wang et al. [35] designed query refinement-based models to answer
why-not questions in image search. Cate et al. [31] introduced an ontology-based model for
explaining why-not questions on conjunctive queries. Calvanese et al. [6] and Bienvenu et al.
[4] leveraged abductive reasoning to answer why-not questions on the data represented by a
DL-Lite ontology. For graph databases, Saiful et al. [24] proposed a query refinement-based
model to address the problem of answering why-not questions on similar graph matching.
However, this model concerns simple undirected graphs, whereas RDF graphs are labeled
directed graphs. Moreover, the model in [24] can only answer why-not questions caused by
inappropriate topological structures of query graphs, whereas both inappropriate RDF terms
and algebraic operations in SPARQL queries can exclude the expected items of users.

2.2 Inconsistency-tolerant query answering

In description logic (DL) knowledge bases field, it is well known that the inconsistency
of instances part (ABox) leads to missing answers in the result set [26]. Inconsistency-
tolerant semantics [1,5,12,26,37] aim to provide meaningful answers to the queries even
when the data conflict with the ontology (TBox). The most well known is the brave [5],
AR [26] and IAR semantics [26]. Recently, a framework was proposed in [4] for explaining
positive and negative query answers (similar to why-not questions) under inconsistency-
tolerant semantics. However, the model in [4] is only applicable to explain the missing
answers caused by the inconsistent subset of ABox, and it is a data-centric approach which
focus on finding the original conflict assertions (responsible for eliminating answers) in
ABox. In contrast, even with the consistent knowledge base, why-not questions on SPARQL
queries may be caused by inappropriate queries, and the goal of our paper is to design a
model to modify the original query to make the missing answers appear and help users refine
their initial queries.

2.3 Query relaxation for RDF data

Query relaxation for RDF data has been studied to address the empty/few-answers problem:
the user’s query is too selective, and the number of answers is not sufficient [22], which
is different from the why-not problem. Query relaxation models attempt to reformulate the
original query into a new relaxed query by removing or relaxing conditions so that the result
of the new query contains sufficient answers. Two types of models (i.e., similarity-based
and rule-based models) are currently utilized to generate multiple relaxed query candidates.
Similarity-based models [13, 14] leverage lexical analyses to determine appropriate relaxation

@ Springer

M. Wang et al.

candidates. Rule-based models [21,22,25,38] exploit RDF schema (RDFS) semantics to
perform relaxation.

2.4 Provenance for SPARQL queries

Data provenance has been studied to help us understand why the items exist in the result set
[9]. For SPARQL queries, existing works [10, 11,32] focus on explaining the provenance of
RDF data to evaluate the data quality and trustworthiness. Data provenance can be used to
answer why questions (i.e., why a piece of data is in the query result). However, it cannot be
applied to our problem as answering why-not questions that concern the items that do not
appear in the result set.

3 Problem formulation

Before defining the why-not question on SPARQL queries, we follow the official W3C
SPARQL standard [17] and the existing formalization of SPARQL in [28] to briefly introduce
several notations employed in this study.

3.1 Preliminaries

Definition 1 (RDF graph) Let I be the set of Internationalized Resource Identifiers (IRIs),
L be the set of literals (denoted by quoted strings, e.g., “Tim Burton”) and B be the set of
blank nodes. An RDF term is a member of the set 7 = I UL U B. An RDF triple t = (subject,
predicate, object) is a member of the set (I U B) x I x T. An RDF graph is a finite set of
RDF triples. In this study, we also refer to an RDF graph as an RDF dataset.

Definition 2 (Graph pattern) [28] Let V be a set of query variables, which is disjoint from T
and is distinguished by leading question mark symbols, e.g., ?filmname, ?person. SPARQL
graph patterns are defined recursively as follows:

(1) Atpletp e {ULUV) x (I UV)x (T UYV) that contains variables in the subject,
predicate or object is a graph pattern. A ¢p is also called a triple pattern.

(2) If Py and P, are graph patterns, then Py AND P,, Py UNION P,, Py MINUS P, and P;
OPTIONAL P, are graph patterns, where AND, UNION, MINUS and OPTIONAL are
SPARQL operators [17].

(3) If P isagraph pattern, then P FILTER R is a graph pattern, where FILTER is a SPARQL
operator and R is a filter condition. A filter condition is a unary or binary expression
[17], such as ?date > “1990.”

A graph pattern P is called a basic graph pattern (BGP) if it only concatenates triple
patterns by AND. A BGP P can be denoted by a set form, such as P = {tpy, tp2, ..., tps}.
A triple pattern can also be considered as a BGP. BGPs are the basic building blocks for any
other graph patterns.

Definition 3 (SPARQL query) The official standard [17] defines four different forms of
queries on the top of graph patterns, namely SELECT, ASK, CONSTRUCT and DESCRIBE.
We will restrict our discussion to SELECT, which is the only form that can return the graph-
matching results to users. We further define a SPARQL query Q as an expression of the form
SELECT S WHERE P, where P is a graph pattern and S € var(P). We use var(P) to
denote the set of variables that occur in the graph pattern P.

@ Springer

Answering why-not questions on SPARQL queries

SELECT ? filmname ?date

WHERE { o (filter ckc;;ldition)
[FILTER { 2date > “1990”] } triple pattern
0 ?ilm name ?filmname.
(SPARQL query) |?ﬁlm director ?person. | P,

?film released ?date. (basic graph pattern)

\ ?person name “Tim Burton” .

}
Fig. 2 SPARQL query Q for Example 1

The SPARQL query Q; for Example 1 is annotated in Fig. 2 to better understand SPARQL
query, filter condition, triple pattern and basic graph pattern.

Definition 4 (Mapping) A mapping is a partial function ;. : V — T. For a triple pattern
tp, we use ((tp) to denote the triple obtained by replacing the var (¢p) (variables in ¢p) with
RDF terms according to w. The domain dom (it) of a mapping w is the set of variables on
which p is defined. We say that two mappings 1¢1, (2 are compatible, denoted by 1 ~ o,
if 01 (?2x) = ua(?2x) forall 7x € dom (1) Ndom (7).

For instance, assuming that iy = {?film — f1336, ? filmname — “BigFish"}, uy =
{2film — f1336, 2date — “2003"}, dom (1) = {?film, ? filmname} and dom(u;) =
{?2film, ?date}, then p; ~ wy because of w1 (?film)=u(?film)=£1336 and ? film €
dom(u1) Ndom(uz).

Given a mapping p and a filter condition R, we use i = R to present that p satisfies
R. For example, if R is ?date > “1990,” ?%date € dom(i) and u(?date) = “1995,” then
1 = R because of “1995” > “1990.”

Definition 5 (SPARQL algebraic operation) Given two sets of mappings §21 and §25, R
denotes a filter condition, and ¥ C V is a finite set of variables, the SPARQL algebraic
operations join (><i), union (U), difference (\), left outer join (3<), projection (7) and selection
(o) are defined as follows:

212y ={u1Upa | 1 € 21, 2 € 22 1 1 ~ p2},
21U ={p| n e 82 orue 2},
21\ 22 ={p1 € 21 | Vo € 221 g » o},
21182y = (821 > §22) U (£21\ £22), (D
y(2) ={u| I, nUp €2 A dom(u) CY A
dom(puYNY = @},
or($2) ={n e 2| pnkE R}
Definition 6 (SPARQL semantic) Let D be an RDF dataset, 7p a triple pattern, P, P, P>

graph patterns, R a filter condition and Q (SELECT S WHERE P) a SPARQL query. We
define the semantics of graph patterns and Q as follows:

@ Springer

M. Wang et al.

ltplp = {uldom(n) = var(tp) and u(zp) € D},
[P1 AND P]p = [Pi]p = [P2]p,

[Py OPTIONAL P>]p = [Pi]p ><[P:]p,
[P UNION P]p = [Pilp Y [P2]p.

[Pr MINUS P2]p = [Pi]p \ [P2]p.

[P FILTER R]p = or([P]p).

[Q]p = 7s([P]p),

(@)

where [.]p is a function that takes a graph pattern or a SPARQL query to match against
the RDF dataset D and returns a set of mappings. In the following part of this study, we
use SPARQL algebraic operations and operators interchangeably, e.g., Py AN D P, can be

denoted as P| < Ps.

The following example illustrates mapping, SPARQL algebraic operation and SPARQL

semantic.

Example 2 Consider the SPARQL query Q>
SELECT ?filmname ?date
WHERE {
film name ?filmname.
?film director ?person.
?person name “Tim Burton”
OPTIONAL{ ?film released ?date}
1,

which retrieves all Tim Burton’s film (?filmname) and optionally (i.e., if available), their

release date (?date). The graph pattern of Q» is P; < P>, where
Py = {(?film name ?filmname).
(?film director ?person).
(?person name “Tim Burton”) },
P> = {(?film released ?date)},
> (OPTIONAL) is the algebraic operation.

Figure 3 illustrates an RDF graph D, in Example 2, f1342, 1336, fI1333 and p2556 are

IRIs.

The following is the semantic of P; < P, on Dj:
[[P1]><1P2ﬂ Dy =

{({?2film — f1336,?filmname — “BigFish,”
?person — p2556, date — “2003"},

23!

{2film — £1342, 7 filmname — “CorpseBride,”

person — p2556, Wdate — “2005"},

12
{?film — £1333,?filmname — “Batman,”

?person — p2556} },

n3

@ Springer

Answering why-not questions on SPARQL queries

2005 “Tim Burton” “2003”
\ i i
released name released

|
1342 —director—> p2556 <«—director— f1336

/ direTctor \

name name
/ fl 3|3 3
“Corpse Bride” name “Big Fish”
“Batman”

Fig. 3 RDF graph D; in Example 2

where 11, (2 and @3 are mappings. The following can be verified easily:

[021p, = {{?filmname — “BigFish,” Ydate — “2003"},
(? filmname — “CorpseBride,” date — “2005"},
(?filmname — “Batman’'}}.
Note that OPTIONAL allows available information to be added to a mapping . If the

optional part of the graph pattern does not match the data, then the relevant variables are left
unbound.

3.2 SPARQL why-not questions

Definition 7 (Why-not question) Given a SPARQL query Q (SELECT S WHERE P) on D
and its result set [Q] p, a why-not question on Q is defined as an expected mapping [y,
posed by users, where dom (i) € Sand Vi € [Q]p @ pw € K.

Consider the SPARQL query Q1 in Example 1, a user may ask why a 1995 film, Batman
Forever, is missing in query results. This why-not question can be denoted by mapping
{?ilmname — “Batman Forever, ”?date — “1995"}.

Definition 8 (Explanation) Given a why-not question 1, on @, an explanation ¥ represents
the reason for 1,,. Two forms of explanation exist according to the different why-not reasons
(a detailed analysis is given in Sect. 4):

(1) A modified graph pattern P’, which is similar to the original P of Q. We say ¥ =
P’ if 3 € [P']p : mw < p/. Consider the why-not question w,, = {?filmname —
“Batman”} in Example 1, explanation ¥ may be a modified P’, where

P’ = {(film name?filmname).
(?filmproducer ?person).
(film released ?date).

(?person name “Tim Burton”)}.

Y = P’ indicates that the director of Batman is not Tim Burton.

@ Springer

M. Wang et al.

i Matchir i
105 2film <JTEOT_ omsg MKy 333 SO | o556) @
) writer Matchiny director
to: 2Milm —2C, posse 8 £1333 _ T | possE) @
i Matchir i
10y: 2film —SECOT | omss K1 333 _AIECIOr | o556) (2fitm — f1333)
. I I FV—/
triple pattern RDF triple mapping

Fig. 4 Evaluations of (?film director p2556) on RDF triples t1, t;, and 73, respectively

(2) A set of tuples, denoted by {(op;, i)}, where each tuple (op;, ;) indicates a query
operator op; and the corresponding mapping u; € [P]p that satisfies 1,y < ;. Following
the example of ,, = {? filmname — “Batman’}, the explanation ¥y may also be a set

{(FILTER (?date > “1990"), {?film — f1333,
date — “1989,”
Iperson — p2556,

?filmname — “Batman’'}}.

The set indicates that Batman is filtered out because of the filter condition ?date > “1990.”

4 Problem analysis

Our investigation found that inappropriate graph patterns, incompleteness/inconsistency of
the RDF database and spelling/syntactic errors of SPARQL queries may lead to why-not
questions on SPARQL queries. In this study, we suppose that the RDF database is clean
and consistent with ontologies, and the SPARQL query of users is free of spelling/syntactic
errors. We focus on why-not questions caused by inappropriate graph patterns, and this
already yields a non-trivial framework to study.

Given a SPARQL query Q over D, the evaluation [P]p of Q can be divided into two
levels [17]: the triple pattern level and the query operator level. At the triple pattern level,
each triple pattern of P is matched against D to obtain a set of mappings. Then, SPARQL
algebraic operations (><, U, \, <,) are applied on the mappings to produce the query
answer at the query operator level.

4.1 “Why-Not” at the triple pattern level

Given a triple pattern p and a why-not question iy, iy ¢ [tp]p may be caused by an
inappropriate direction or inappropriate RDF terms in ¢p. Example 3 illustrates the
different scenarios.

Example 3 Considering an RDF triple t = (f1333 director p2556),tp1, tps and t p3 are three
possible triple patterns to be evaluated on ¢, respectively, as shown in Fig. 4. The evaluation
[tp1]: = {?film — £1333} will not yield a missing answer. In the cases of 7p, and 7p3, the
why-not question p,, = {? film — f1333} will be proposed to [tp2];, [¢p3]:, respectively.

For [tp2]; = @ and wyy = {?film — f1333}, if the RDF term writer of tp; is modified
to director, then [tp2’]; = {?film — f1333}. The reason for j,, is that inappropriate

@ Springer

Answering why-not questions on SPARQL queries

?2date

released

N

?film —director?person —name—¥»“ Tim Burton”
7

name

?filmname
Fig. 5 BGP in EXAMPLE 1

RDF terms in 7p; led to a failure to match . We define a function Modify() that modifies
a triple pattern ¢p by substituting an RDF term with another one in the RDF dataset or a
variable, and w,, € [Modify(tp)]p.

For [tp3]; = @, the reason for w,, = {?film — f1333} is that the triple pattern
formulated by the user is in an inappropriate direction. If we modify 7p3 to tp; = (film
director p2556) just by switching the direction of director in tp3, then ¢p5 will match 7 and
[tps']: = {2 film — f1333}. Formally, we define a function Reverse() that modifies a triple
pattern ¢p to p’ by reversing the direction of the predicate in ¢p. Then, for a why-not question
ww ¢ [tplp, tp is in an inappropriate direction if and only if ., € [Reverse(tp)]p.

4.2 “Why-Not” at the query operator level

Given an RDF graph D and a graph pattern P, u, is a why-not question on P, i.e.,
dom(puy) C var(P)andVu € [P]p : pw € u.

We first analyze ., on P with the same kind of operators, and then, we proceed to perform
a higher-level analysis on the combination of different operators.

AND Let P = Py >< P> ... P,, where Py, P, ..., P, are BGPs. P is also a BGP (cf.
Definition 2). Triple patterns in P concatenate each other by o< and form a connected graph.
Figure 5 shows a graphical representation of the BGP in Example 1.

Each mapping in [P] p presents a match of P, which is a RDF subgraph of D. The reason
for p,, on P is that some triple patterns in P are inappropriate to match the RDF subgraph
of D about .. Adapting the idea from explaining why-not questions in Sect. 4.1, the expla-
nation ¥ p is a modified graph pattern P’, which satisfies 3u’ € [P']p : ny € p’. Note that
if [P]p # @, then P matches at least one RDF subgraph in D and all directions of predi-
cates in P are correct. Modifying inappropriate triple patterns should focus on inappropriate
RDF terms. If [P]p = @, then both directions and RDF terms should be considered for
modifications.

UNION Let P = P{U P---U P,, where Py, P», ..., P, are BGPs. Applying [P} U
P]p = [Pi]lp U [P2]p (cf. Definition 6) to [P]p recursively, we can obtain [P]p =
[Plp UlPp---UPdp = {uw | w € [P]p or w € [P2]p ...or p € [Pi]p}.
With the premise Yiu € [P]p : uw € w (cf. Definition 7), we can obtain Vi € [Pi]p :
puw € w, wherei =1,2,...,n. Itis intuitive that the explanation for the why-not question
My on P is a set of explanations Yp = {Yp,, ¥p,, ..., ¥p,}, Where Yp,, ¥p,, ..., p, are
explanations for py, on Py, Pa, ..., P,, respectively.

Example 4 Consider a graph pattern P = P; U P, is used to find war or road films released
in America, where

Py = {(?ilm name ilmname).

@ Springer

M. Wang et al.

(ilm country “United States”).
(?film type War films)},

P> = {(?ilm name filmname).
(%ilm country ““United States”).
(?film type Road films)}.

After graph pattern matching, we may obtain following mappings for P.

[Pi]p = ({ilm — f1137, 2filmname — “Fury”},
{2film — f2209, Yilmname — “Saving Private Ryan"} }.
[P.]p = {({ilm — 5953, Ailmname — “Rain Man"},
{2ilm — 21549, Yilmname — “Nebraska'}}.
[Plp =[PlpY[P.]p
= {{ilm — f1137, ?filmname — “Fury”},
{2ilm — f5953, Ailmname — “Rain Man"'},
{2ilm — 21549, Yilmname — “Nebraska'},
{2ilm — f2209, ilmname — “Saving Private Ryan”} }.
A why-not question p,, = {filmname — “Atonement”} is posed on P. The explanation for
y = {ilmname — “Atonement”} on P is Wp = {{Y'p,, ¥p,}, where
Yp, = {(? film name filmname).
(2 film country “United Kingdom'').
(?ilm type War films)},
Yp, = {(?ilm name ilmname).
(ilm country “United Kingdom'').
(?film type Romantic films)}.
For 1,y on P with MINUS, OPTIONAL and FILTER, we propose Propositions 1-3 to
simplify @, on AND and UNION explanations.

Proposition 1 Let P = Py \ P», where Py, Py are BGPs, the explanation for the why-not
question [Ly, on P is denoted by yrp.

(1) If3uy € [Pi]p : pw S 1, then (MINUS(i2), 1) € Yp, which indicates that i1
is eliminated from result mappings by the operator MINU S due to y € [P2]p and

1~ po.
2) IfYur € [Pi]p & 1w g W1, then Yp = p,, where Y p, is the explanation for |1, on
Pi.

Example 5 Consider a graph pattern P = P; \ P is used to find war films not released in
America, where
Py = {(?ilm name ilmname).
(?film type War films)},
P, = {(?ilm country “United States’)}.

After graph pattern matching, we may obtain following mappings for P.

[Plp = {{? film — 2356, Yilmname — “The Pianist"},
(? film — 3142, Ailmname — “Hotel Rwanda'}}.

@ Springer

Answering why-not questions on SPARQL queries

V€ [Plp : pw & 1o

Where is /iw missing? [[Pl\lel D
Yes Teneee\
3 € [Pilp : pw S pa o rodo 1
YT = A [P2]p
Py P

Fig. 6 The parser tree of P = P \ P»

A why-not question iy, = {?filmname — “Brave Heart"} is posed on P.

According to Proposition 1, we should first verify whether [P] p contains Brave Heart by
verifying whether 1 € [P1]p : {2filmname — “Brave Heart’} C wy. If [P1]p contains
Brave Heart, explaining p,, will focus on MINUS; otherwise, explaining ¢, will focus on
P.

The following proof for Proposition 1 is illustrated with Example 5.

Proof Let P = Py \ P,, where Py, P, are BGPs.

(i) According to [P1 \ P2]p = [P1]p \ [P2]p and £21 \ 22 = {1 € £21 | Yuz € £22 :
p1 = pa} (cf. Definitions 5, 6), [P]p = [Pi]p \ [P2]p = {n1 € [Pilp | Yz €
[P2]p : p1 o p2).

(ii) Figure 6 shows the parser tree and query evaluation of [P]p. With the premise Vi €
[Plp : mw Q i (ctf. Definition 7) on the root node, we can observe that i, can
be eliminated in two cases: eliminated by the MINUS operator or eliminated by the
graph pattern matching of P;. We can locate where (., is missing on the parser tree by
determining whether 31 € [P1]p : pw < i1.

w1 from result mappings on the root of the parser tree, as shown in Fig. 6. Besides, u»
which satisfies uo € [P2]p : 1 ~ p2 must exist in the right side of the root (cf.
Definition 5). Hence, (MINU S(j12), it1) € ¥p, where o € [P2]lp : 1 ~ pa.

(iii) If3u; € [Pi]p : w S w1, [P1] p contains p,, in the parser tree, and MINUS eliminates

Taking Example 5 to illustrate above step, we may obtain three mappings for P;.

[Pi]p = ({2film — 2356, Ailmname — “The Pianist”},
(2ilm — f3142, Uilmname — “Hotel Rwanda'},
(2ilm — 1589, ilmname — “Brave Heart"}}.

We can find that w, = {?filmname — “Brave Heart'} is contained by {?film —
1589, ilmname — “Brave Heart"} in [P]p, the reason for missing i, is that MINUS
eliminates the mapping {?film — 1589, ?ilmname — “Brave Heart"} from the result set.
There must be a mapping {?film — f1589} in [P2] p satistying {?film — 1589, Yilmname —
“Brave Heart"} ~ {film — {1589}, which indicates that Brave Heart is produced in Amer-
ica. Therefore, (MINUS({? film — f1589,?film — “Brave Heart"}),{?film —
f£1589}) will be added to ¥ p.

@iv) If Yy € [Pillp : pw ;(_ 11, as shown in Fig. 6, ,, is missing in [P;]p of the parser
tree. The graph pattern matching of P; eliminates p; from result mappings. Hence,
Yp = ¥p,, where ¥ p, is the explanation for 1., on P;.

@ Springer

M. Wang et al.

Taking Example 5 to illustrate above step, we may obtain two mappings for Pj.

[Pi]p = {{film — f2356, Yilmname — “The Pianist"},
(2ilm — f3142, Yilmname — “Hotel Rwanda''}}.

Then, we can observe that none of [P;] p contains p,, = {filmname — “Brave Heart"}.
Therefore, j1,, on P = Py \ P, can be simplified to py, on P and ¥ p = ¥p,, where ¥ p, is
the explanation for 1, on P;. A possible explanation is

Yp = Y¥p, = {(ilm name Yilmname).
(2film type film)}.

[m}

Proposition 2 Let P = P »< P>, where Py, P> are BGPs, the explanation the why-not
question for Ly, on P is denoted by yp.

(1) [P]p = [P1 > P2 pU[PI\P2]p, but yrp # {¥pioap,, W\ Py} Where Ypiwap,, Y\ Py
are explanations for (., on Py > Py, Py \ P, respectively.

(2) If dom(uy) Nvar(Py) = @, thenV € [Pi]p : tw Q wand yp = Yp,, where ¥ p,
is the explanation for ., on P;.

(3) If dom(uy) Nvar(Py) # @, then ¥ € [P1 o< Pa]p : o € 1 and Yp = Ypuaps,
where Y p,sqp, is the explanation for L., on Py b<t P,.

Example 6 Consider a graph pattern P = Pj > P, is used to retrieve the actor and his
country if he won Academy Male Best Actor, where
Py = {{?actor name actorname).
(?actor type actor)},
P, = {(?actor country ?country).
(?actor gender male).
(?actor haswon “Academy Award for Best Actor”)}.

After graph pattern matching, we may obtain following mappings for P.
[P]p = {{?actor —pl119, actorname — “Brad Pitt"},
{2actor —pl785, Yactorname — “Leonardo DiCaprio”},
{2actor — p1276, 2actorname — “Matthew McConaughey,”
2country — “United States” },
{2cactor — p2313, 2actorname — “Eddie Redmayne,”
2ccountry — “United Kingdom''}}.
If a why-not question p,, = {?actorname — “Spike Lee"} is posed on P, then dom (1) N
var(P,) = &. Explaining u,, will focus on P; according to Proposition 2.

In another case, a why-not question u/, = {?actorname — “Leonardo DiCaprio,”
2country — “United States”} can be also posed on P, despite that {?actorname —
“Leonardo DiCaprio”} is already in [P]p. According to Proposition 2, dom(u},) N
var(Py) = {2country}, explaining u/, is translated into explain p/, on Py s Ps.

The following proof for Proposition 2 is illustrated with Example 6.

Proof Let P = Py »< P>, where Py, P> are BGPs.

(i) According to [[P1]><1P2]]D = [[P]]]DN[[Pz]]D and £21><1822 = (£21 b< $22)U(£21\ £22)
(cf. Definitions 5, 6), [[PﬂD = ([[Pl]]p > [[PZ]]D) U ([[Pﬂ]D \ [[Pz]]p) = [[Pl = PZ]]D @] [[Pl \
Plp.

@ Springer

Answering why-not questions on SPARQL queries

Vu € [Plp : pw € p
[P1< Pp U[PL\ P2]p
Where is twmissing? e
v ___No—» [P > P]p [P\ P2lp
dom(pw) Nvar(P) = @ . / \ / \
es\‘ ~—X T~
[P]p [Z2lp ([Pl [P]p

Py Py P Py
Fig. 7 The parser tree of P

Intuitively, we can use Definition 9 to answer u,, on P, and ¥p = {¥p;eap,, ¥ P\ P, }-
However, note that there are only UNION operators between BGPs in Definition 9. [P]p =
[P1 < P2]p U[P1\ P2]p is a graph pattern with different operators. Thus, we cannot
directly apply Definition 9 to [P; <t P2]p U [Py \ P2]p. In the following, we use reduction
to absurdity to proof that ¥ p # {{¥'p,s«p,, ¥\ pP,}, Where ¥ p.ap,, ¥p\ p, are explanations
for wy on Py <t Py, Py \ P, respectively.

Assuming that Yy € [[P]]D D M g ", [[P]]D = [[P] > PZ]]D U [[P] \ PZHD, and
Yp = {V¥par,, YP\P,)

Then, we compute v p,\ p, for 11y, on Py \ Ps.

If there exists a mapping w1 € [Pi]p satisfies uyy S g, we can infer that MINUS
eliminates j1 from [P]p due to 3us € [P2]p : ;1 ~ w2 (cf. analysis in Proposition 1).

With up € [P2]p : ;1 ~ w2, we can obtain (w1 U o) € [Py o<t P2] p (cf. Definition 5).
Further, with ptyy € 1 C (1 U po) and [P]p = [P1 o< P2]p U[P1 \ P2] p, we can obtain
(M1 Up2) € [Plp : pw S (1 U p2).

(u1 U pa) € [P]p @ mw S (1 U po) is conflicting with the initial assumption Y €
[PIp : pw 51 M-

If no such a mapping 2 € [P2]p : ®1 ~ m2, g will belong to [Py \ P2]p. iy will
appear in [P]p and conflict with the initial assumption Vi € [P]p : uy € p again.

Hence, ¥p # {¥p;apr, ¥P)\P,}, Where ¥pap,, ¥p\p, are explanations for 1, on
P1 > Py, P1\ P, respectively.

(ii) Figure 7 shows the parser tree and query evaluation of [P]p. With the premise Y. €
[Plp : Hw ;(_ w (cf. Definition 7) on the root node, we can obtain Vi € [Py o< P2]p :
pw ¢ p for the left child of the root, and Viu € [Py \ P2]p : puw € p for the right child of
the root. For the right child of the root, as described above, there is no possibility that there
exists a mapping | € [P1]p satisfying pyy € 1, and Ius € [P2]p : 1 ~ 2. Therefore,
the why-not question on right side of the root can be simplified to Vie € [Pi]p : pw € 1.

In summary, Vi € [P]p : sty ¢ p can be translated into Viu € [Py >< Pa]lp @ pw € 14
orVYu € [Pi]p : Htw Q 1, depending on whether p,, contains the variables in P;, as shown
in Fig. 7.

(iii) If dom(uy) Nvar(Py) = @, then Vu € [P]p @ py ¢ w can be translated into
Y € [Pilp : 1w ,@ i, as shown in Fig. 7. Then yp = p,, where v p, is the explanation
for py on Pyp.

Taking Example 6 to illustrate above step, the why-not question ., = {?actorname —
“Spike Lee”} and dom () Nvar(P2) = &. Therefore, ¥p = ¥p,, and a possible explana-
tion is

@ Springer

M. Wang et al.

Yp, = {(?actor name ?actorname).

(?actor type director)}.

@iv) If dom(uy) Nvar(Py) # &, then Y € [P]p : tw SZ i can be translated into
Vi € [P Pa]p i ppw € . as shown in Fig. 7. Then ¥p = ¥p ap,, Where ¥p.ap, is the
explanation for p,, on Py o<t P;.

Taking Example 6 to illustrate above step, the why-not question w1, = {?actorname —
“Leonardo DiCaprio,” 2country — “United States”} and dom (i),)Nvar (P2) = {2country}.
Thus, ¥ p = ¥p,s«p,, and a possible explanation is

Ypeap, = {(?actor name lactorname).
(?actor type actor).
(?actor country country).

(?actor gender male).

(

2actor haswon “Film awards for lead actor”)}.

[m}

Proposition 3 Let P = or(P1), where Py is a BGP, R is a filter condition, the explanation
for the why-not question |1y, on P is denoted by {p.

(1) IfApr € [Pilp : w S w1, then (FILTER(R), 1) € ¥p, which indicates that i is

eliminated from result mappings by the operator FILT E R with the filter condition R.

(2) IfVur € [Pi]lp : w € w1, then Yp = Yp,, where Yp, is the explanation for ., on
Py.

Example 7 Consider a graph pattern P = og(Py) is used to find all war films since 2000,
where

P1 = {(?ilm name ?filmname).
(2film type War films).
(?ilm released ?date)},

and the filter condition R is ?date > “2000.”

After graph pattern matching, we may obtain following mappings for P.
[Plp = {{Yilm — f2356, ilmname — “The Pianist,”
2date — “2000"},
{2ilm —f3142, ?ilmname — “Hotel Rwanda,”
date — “2004"},
(2ilm —f1137, Wilmname — “Fury,”
2date — “2014"}}.
A why-not question ., = {?filmname — “Saving Private Ryan’} is posed on P.
According to Proposition 3, we should first verify whether [P] p contains Saving Private
Ryan by verifying whether I € [Pi]p : {?filmname — “Saving Private Ryan"} C ;.
If [P1]p contains Saving Private Ryan, explaining (., will focus on FILTER; otherwise,
explaining 1, will focus on P;.
The following proof for Proposition 3 is illustrated with Example 7.

Proof Let P = or(P1), where P is a BGP, R is a filter condition.

@ Springer

Answering why-not questions on SPARQL queries

o E[PD : pw ¢ p

T yes Where is tiy missing?

Py
Fig. 8 The parser tree of P = op(Pq)

(i) According to [or (P)]p = or([P]p) andog($2) = {u € £2 | u = R} (cf. Definitions
5.6), [Plp = (w1 € [Pilp | 11 = R).

(ii) Figure 8 shows the parser tree and query evaluation of [P]p. From bottom to top,
the graph pattern matching result [P p will be generated first during the query evaluation,
and then, [P;]p will be constrained by o to generate the final [P]p. With the premise
Yu € [P]p : Htw SZ w (cf. Definition 7), we can observe that 1, can be eliminated in two
cases: eliminated by the FILTER operator, or eliminated by the graph pattern matching of
P;. We can locate where 1, is missing on the parser tree by determining whether) €
[[PIHD Ty S .

(i) If u € [P1]p : w € u1, taking a look at the parser tree in Fig. 8 i, is contained
by w1 € [P1] p. However, on the root of the parser tree, 11 does not satisfy R and FILTER
eliminates p¢1 from result mappings, hence, (FILT ER(R), ju1) € ¥p.

Taking Example 7 to illustrate above step, we may obtain four mappings for Pj.

[Pi]p = ({ilm — 2356, 2filmname — “The Pianist,”

date — “2000"},

{2ilm — f3142, ilmname — “Hotel Rwanda,”
Aate — “2004"},

{2ilm — f1137, Ailmname — “Fury,”
ate — “2014"},

{2ilm — f2209, ilmname — “Saving Private Ryan,”
date — “1998"}}.

We can find that w,, = {?filmname — “Saving Private Ryan"} is contained by {?film —
12209, ilmname — “Saving Private Ryan,”?date — “1998"} in [Pi]p, and the reason
for missing ju,, is that FILTER eliminates the mapping {?film — (2209, ?filmname —
“Saving Private Ryan,” date — “1998"} from the result set because of “71998” < “2000.”
Therefore,

(FILTER (?date > “2000"),

12 film — 2209,

? filmname — “Saving Private Ryan,”
2date — “1998"})

will be added to {p.

(iv) If V1 € [Pi]p : ptw & 11, the reason for u, is that the graph pattern matching of
Py eliminates 141 from result mappings. Taking a look at the parser tree in Fig. 8, ¥ p = ¥ p|,
where ¥ p, is the explanation for 1t,, on P;.

@ Springer

M. Wang et al.

P Pe P, <X P, B P, 7 PPy
N R R
/\ K P3 P1 P3 P1 P3
P, P, R{_/ N N J
dom(pw) Nvar(Py) # @ Vu € [P1 <1 P31 Py]p -
7(P) pw & p
(a) (b) (©) (d) (e)

Fig. 9 Explaining u, on the parse tree 7(P)

Taking Example 7 to illustrate above step, we may obtain three mappings for P;.
[Pi1]lp = ({ilm — 2356, 2filmname — “The Pianist,”
ate — “ 2000},
{2ilm — f3142, Ailmname — “Hotel Rwanda,”
date — “2004"},
(2ilm — f1137, Yilmname — “Fury,”
ate — “2014"}}.
Then we can observe that none of [P;]p contains w,, = {?filmname — “Saving Private
Ryan”}. Hence, u,, on P = og(Py) can be simplified to sy, on P and Yp = ¥ p,, where
¥, is the explanation for 1y, on Pj. A possible explanation is

Yp = ¥p, = {(film name ilmname).
(?film released ?date).
(film type film)}.

[m}

In summary, for why-not questions on MINUS and FILTER, we should consider both
operators and inappropriate triple patterns in BGPs according to Proposition 1 and 3; for
why-not questions on OPTIONAL, we should focus on inappropriate triple patterns in BGPs
according to Proposition 2.

Next, we investigate the complex scenario when graph patterns blend together with differ-
ent operators. Given BGPs Py, P>, P3, Py and Ps, a graph pattern P = og((((P U P) >«
P3) < P4)\ Ps), a why-not question iy, on P and dom () N var(Psy) # . Figure 9a
shows the parse tree 7 (P).

First, the operator UNION in 7(P) means that 7(P) needs to be converted to different
cases for u,, by using the distributivity equivalences

(P1U Py) b P3 = (P pa P3) U (P> P3),
Py o< (P2 U P3) = (P o< P2) U (P < P3),
(P1U P) <1 P3 = (P13 P3) U (P2>< P3),
(PLUP)\ P3=(P1\ P3)U(P2\ P3).

3

@ Springer

Answering why-not questions on SPARQL queries

Figure 9b presents one of the cases with Py. Then, > will be translated into >< because of
dom(uy) Nvar(Ps) # @ according to Proposition 2, as shown in Fig. 9b, c. Next, if the
evaluation [P > P3 b1 P4 of MINUS’s left side does not contain p,, (i.e., Vi € [P p<
P3 < P4]p : pw Q /), the operator MINUS and its right side Ps will be removed from
7(P) according to Proposition 1, as shown in Fig. 9c, d. Finally, for the operator FILTER,
Wy is simplified to p,, on P o<t P3 >a P4 because of Viu € [Py > P3 o<t Pa]p : g %
according to Proposition 3, as shown in Fig. 9d, e.

In the above Example, 3u € [Py o<t Pz > Pa]p @y S @ is a necessity for 1y,
appearing in [P]p. We further define a new important notion, the necessary BGP, which is
used frequently in the following sections.

Definition 10 (Necessary BGP) Consider the SPARQL query Q (SELECT S WHERE P), a
why-not question p,, on Q, the necessary BGP for v, is a basic graph pattern N B, where
NB C Pand3un € [NB]p : iy S pn is a necessity for u,, appearing in [Q] p.

For instance, Fig. 9e illustrates the necessary BGP for the why-not question 1., in the above
example.

According to the above analyses, ANNA is designed to address why-not questions on
SPARQL queries using a divide-and-conquer strategy. ANNA first computes the necessary
BGP and identifies where the absence of the expected items occurs and then provides expla-
nations according to different reasons.

5 Explanation model
5.1 Framework

Given an RDF dataset D, a SPARQL query Q and a why-not question u,, on Q, Fig. 10
illustrates the framework of generating a set of explanations ¥ by ANNA, which mainly
includes three modules: computing the necessary BGP (described in Sect. 5.2), modifying
graph patterns (described in Sect. 5.3) and identifying inappropriate operators (described
in Sect. 5.4).

Module I (computing the necessary BGP) This module first generates a parse tree T (P) of
the SPARQL query Q and then computes the necessary BGP N B for the why-not question
Ly based on t(P) (described in Sect. 5.2). If 7(P) involves UNION operators, then this
module will output a set of necessary BGPs N Bs, and ANNA will explain p,, on each
necessary BGP in N Bs, respectively.

With a necessary BGP N B, ANNA identifies where the expected mapping /., is removed
by determining Iuyp € [NB]p : tw S unp,asshowninFig. 10. If such a uy p exists, then
the why-not reason will be located at inappropriate operators; otherwise, it will be located at
inappropriate triple patterns in N B.

To determine Iuyp € [NB]p : yw < unp, a new BGP N B’ will be generated from
N B by substituting variables according to u,,. For example, assuming a necessary BGP

N By = {(ilm name ?filmname).
(?film director Iperson).
(?film released ?date)},

and a why-not question {?filmname — “Batman”},

N B = {(ilm name “Batman”).

@ Springer

M. Wang et al.

) > Y

Module II ’ é

Q: IIQIIDmuw

Module I

‘ Module IIT
Identifying

Modifying

graph patterns inappropriate

operators

Computing the
necessary BGP

For each NB € NBsdo

NB’ [NB'lp

3unB € [NB]p : pw C unB

Fig. 10 Framework of ANNA

(?film director Mperson).
(?film released date)}.

[NB']p can be returned by issuing N B’ to the SPARQL query engine and [NB']p <
[NB]p.If [NB'|p # @, then Vunp € [NB]|p : twy S yp’, which means that Juyp €
[NB]p : v S nnp; otherwise, it suggests that Vuyp € [NB]p : tw Q ung. NB' will
be the input of the next modules instead of N B. If 1, is about why the result is an empty
set,i.e., [NB]p = &, then NB’ = NB.

Module 1I (modifying graph patterns) For the why-not question 1., caused by inappro-
priate triple patterns in N B’, this module generates a modified graph pattern m N B’ by a
graph-based approach (described in Sect. 5.3). mN B’ should be similar to N B’ and can be
utilized to match RDF graphs for the expected mapping (i,,. Then, m N B’ will be returned
as an explanation .

Module III (identifying inappropriate operators) For a why-not question ., caused by
inappropriate operators, this module will compare each mapping uyp € [N B']p with the
output of questionable operator via post-order traversal on the parse tree 7 (P) of Q. Once a
mapping uyp (Lw S wyp) is filtered out by an operator op, the module will add a tuple
(op, ;uy pr) to the explanation yr.

Algorithm 1 highlights the main steps of generating explanations. Lines 4-11 are to deter-
mine Iunp € [NB]p : w S unp. Lines 5-10 are to replace variables of 7p according to
iy and generate N B’. Function ComputingNB (Module 1) is described in Sect. 5.2, Mod-
ifyingGP (Module II) is described in Sect. 5.3, and InappropriateOperator (Module III) is
described in Sect. 5.4.

5.2 Computing the necessary BGP

The module of computing the necessary BGP (Module I) aims to find the necessary BGP
N B for (. In this module, the parse tree 7(P) is generated from Q, and computing the
necessary BGP essentially involves eliminating U, \, <, o from 7 (P) and retaining the basic
graph patterns in t(P), which must match RDF triples for jty,.

@ Springer

Answering why-not questions on SPARQL queries

Algorithm 1 Generating an explanation

Input: SPARQL query O, [Q] p, tw
Output: A set of explanations ¥

1: Initialization: NBs = &, ¥ = &,
2: NBs «<ComputingNB(Q);

3: forall NB € NBs do

4: NB' =g

5: foralltp € NB do

6 if 7p.contains(?w €) then
7 tp7w=w

8 end if

9 N B’.add(tp);

10: end for
11:
12
13
14

15

if [NB']p # @ then
Y < InappropriateOperator (Q, [NB']p) ;

else
Y < ModifyingGP(N B’, 11y) ;
: end if
16: W.add(v);
17: end for

18: return ¥.

s o/ \ -
M{/ \]>4 N P/]/, P; / \
LN /&f/ _______ ’ §> Py P

T / \ \ NB
PrunYng \ P S » Pruning
¥
dom(pw) Nwvar(P3) # @~ ==~

Fig. 11 Eliminating OPTIONALs from the parse tree 7 (P)

As analyzed in Sect. 4.2, if t(P) involves UNIONs, then N B needs to be processed
according to Equation (3). However, the following distributivity equivalences do not hold
when U is in the right side of \ or >« [28],

P11 (P, U P3) = (P < Po) U (P < P3),

Py\ (PUP3) = (P \ P) U (P \ P3). @
Hence, OPTIONAL and MINUS operators should be eliminated from the parse tree (P) by
pre-order traversal before the UNION is to be processed.

According to Proposition 2, once a node is =, if the right-side graph pattern of < contains
variables of 1, then the < will be translated into 0<i; otherwise, the right-side graph pattern
of > will be pruned, and > itself will be replaced by its left-side graph pattern.

For instance, a graph pattern P is (P >< P2) < (P3 < (P4 >< P5)) and dom(pty) N
var(P3) # <. Figure 11 illustrates the eliminations of OPTIONAL operators from the parse
tree T(P). The necessary BGP N B is Pj <t P3.

According to Proposition 1, once a node is \, the right-side graph pattern of \ will be
pruned, and \ itself will be replaced by its left-side graph pattern.

@ Springer

M. Wang et al.

/N /N b

=T /\\) NB
| .
\
Fig. 12 Eliminating MINUSs from the parse tree 7 (P)

Table 1 Statistics of four SPARQL query log datasets in LSQ

Dataset Date #Queries
DBpedia 30/04/2010 to 20/07/2010 1.7 million
Linked Geo Data (LGD) 24/11/2010 to 06/07/2011 1.6 million
Semantic Web Dog Food (SWDF) 16/05/2014 to 12/11/2014 1.4 million
British Museum (BM) 08/11/2014 to 01/12/2014 800 thousands

For instance, a graph pattern P is P; o< (P> \ (P3 \ P4)). Figure 12 illustrates the
eliminations of MINUS operators from the parse tree 7(P). The necessary BGP NB is
P < Ps.

Given a SPARQL query Q and the why-not question u,,, we propose the algorithm
Computing necessary BGP to compute N B for 11, whose pseudocode is presented in Algo-
rithm 2. First, the parse tree t(P) is constructed by parsing Q [28] (Line 2). Next, FILTER,
OPTIONAL and MINUS operators are eliminated by pre-order traversal on 7(P) (Lines 3—
29). Then, according to Equation (3), the UNION operators are processed to convert 7(P)
from conjunctive normal form (CNF) to disjunctive normal form (DNF) (Line 30). Finally,
the remaining graph patterns are divided into basic graph patterns by UNIONs, and each BGP
forms a necessary BGP (Lines 31-32).

The algorithm 2 of Module I (computing the necessary BGP) mainly consists of two
parts: 1) eliminating FILTER, OPTIONAL and MINUS operators by pre-order traversal on
parser tree T(P) [28]; 2) processing UNION operators to convert T(P) from conjunctive
normal form (CNF) to disjunctive normal form (DNF). For the pre-order traversal, the time
complexity is O(n), where n is the number of operators in 7(P). For processing UNION
operators, the process of converting CNF to DNF has been proved NP-hard [27]. And its
worst time complexity is O (2"); m is the number of UNIONs. Hence, the time complexity
of module is O (n + 2™).

We analyze SPARQL queries from the logs of four datasets in LSQ [29] shown in Table 1.
We find that the UNION queries are not often used in DBpedia, LGD and BM. The percentage
of UNION queries is 4.42% in DBpeida, 9.65% in LGD, 0.00% in BM, respectively. Among
these UNION queries, 96.25% in DBpedia (99.11% in LGD) have one UNION. Although the
percentage of UNION queries in SWDF is 32.71%, but 98.77% of them contain one single
UNION only, 0.93% have two UNION's. Hence, the number of UNIONs is usually very tiny
(and frequently is just one) in the real-world SPARQL queries, and we can ignore this cost
in most time.

@ Springer

Answering why-not questions on SPARQL queries

Algorithm 2 Computing necessary BGP

Input: SPARQL query O

Output: A set of necessary BGP N Bs

1: Initialization: NBs = &, t(P) = @, ¥ = &, Stack;
2: 7(P)< ParseQuery (Q); // return a parse tree

3: Node <SelectRootNode(t(P));

4: while Node != NULL or !Stack.Empty() do

5: while Node!=NULL do

6 if Node is o then

7 //eliminating o according to Proposition 3

8 Node=Node — leftchild;

9: end if

10: if Node is \ then

11: /leliminating \ according to Proposition 1
12: Node — rightchild=o;

13: Node=Node — leftchild;

14: end if

15: if Node is < then

16: //eliminating > according to Proposition 2
17: if dom(juy) Nvar(Node.RigthTree) = @ then
18: Node — rightchild=o;

19: end if

20: Node=Node — leftchild;

21: end if

22: Stack.push(Node);

23: Node=Node — leftchild;

24: end while

25: if !Stack.Empty() then

26: Node <Stack.pop();

27: Node=Node — rightchild;

28: endif

29: end while

30: t(P)<—applying Equation (3) on 7(P);
31: //extracting BGPs from t(P) divided by U.
32: N Bs<—ExtractingBGPs (t(P));

33: return t(P).

We also measure the execution time of Module I answering 61 why-not questions in our
experiment, and the average time is 1.3 s. This amount of time is acceptable for the whole
framework and indicates that UNION's have minimal impact on the efficiency of module 1.

5.3 Modifying graph patterns

The module of modifying graph patterns (Module II) aims to address why-not questions
caused by inappropriate triple patterns in Q. The input of this moduleis N B’ ([N B']|p = 9).
To explain .y, this module will detect and modify inappropriate triple patterns in N B’. The
modified BGP mN B’ of N B’ will be returned as an explanation and help refine the initial
BGPs of SPARQL queries, which are illustrated with Example 8 as follows:

Example 8§ Consider a necessary BGP N By is used to find the actors who starred in Tim
Burton’s film Alice in Wonderland and starred in another Tim Burton film.

N By = {(?actor name ?actorname).

(?actor strarring ilml).

@ Springer

M. Wang et al.

(?actor strarring ilm2).

(ilm1 name “Alice in Wonderland").
(?person director ilml).

(?person name “Tim Burton”).
(?person director ilm2).

(

ilm2 name ?film2name)}.

The user proposes a why-not question (., =

{?actorname — “Alan Rickman,”

Ailm2name — “Alice Through the Looking Glass''}.

N B’ has a graph structure, in which triple patterns are connected by ><. Figure 13a shows a
graphical representation of N By generated from N B4 according to ji,, ([N B,]p = @), and
tp1 ~ tpg are the identifiers of the triple patternin N Bj. A naive solution to find inappropriate
triple patterns is examining the output of joined triple patterns in a left linear fashion. This
solution may lead to an exhaustive search because the time cost of each identification step is
proportional to the number of RDF triples that are produced during examination, which has
been proved in [30]. For instance, ¢p; and ¢p; are used to find all actors and their starring
films in the dataset, and they will produce 81,693,233 RDF triples which need to be joined
with each other and examined one by one.

To tackle the above challenge, ANNA employs a novel graph-based approach to detect
inappropriate triple patterns. The approach considers the topological properties and mainly
includes three steps: BGP partition, inner-part modification and inter-part modification. We
will illustrate these three steps with Example 8 in next sections.

5.3.1 BGP partition

This step aims to partition the graph pattern of Q into several parts based on different types
of <.

For a BGP, =< between two triple patterns is on the shared subjects or objects. Thus, the
typical types of b« are subject—subject < (S-S p<i), subject—object <t (S-O <) and object—
object >< (O-O <). In this study, we do not consider < on predicate, because it is uncommon
[32]. Triple patterns joined by S-S >« typically describe an entity and the property values to
be queried, e.g., (?film name ?filmname) < (?film director ?person). Triple patterns joined
by S-O < or O-O < describe the relationships between two different entities to be queried,
e.g., (?film director ?person) > (?person name*“Tim Burton”). The empirical study [32] on
real-world SPARQL queries from DBpedia logs also reveals that the most common type of <
is S-S <1 (59.23%), followed by S-O <i (35.88 %) and O-O v<i (4.66 %). This finding indicates
that entities and their property values are more concerned by users, and triple patterns joined
by S-S < should be detected first.

On the basis of different types of >, N B’ can be partitioned into several parts. Each part
Part; € N B’ contains only S-S < and connects to others by S-O < or O-O <. Figure 14
illustrates the partition of N B). With the BGP partition, ANNA will first detect and modify
the triple patterns shared on the same subject, which are more likely to appear in SPARQL
queries. On the other hand, ANNA can detect inappropriate triple patterns in a parallel
process, i.e., each part after partitioning can be parallelized onto the threads (or computing
nodes) without interactions.

@ Springer

Answering why-not questions on SPARQL queries

tps tps tps
“ f_H f_H “ M
.Alan . <—nam Qactor —starring—3 ?film?2 name—p Alice Through the
Rickman | * Looking Glass”
tp: starring director ¢ tP4
“Alice in . | [7%s A »
» €—name——7film] <director— ?person —name—> “Tim Burton
Wonderlan - - -
tp7 tp3 tp6
(a)

_______________ >

| A

| Examining tp; [>] tp» i |><]/_J \tp
I firstly will cost too 8
| i A \

|

much time

tp, tp2
(b)

Fig.13 N BA of necessary BGP N By, and identification process of joined triple patterns. a N BA, b Identifying
the joined pattern in a linear fashion

“tps—(P—tPZQO--..:: O—tr=—>@

tpi »
S-0
Part, & o Part, @ bound subjects or objects
0-0 D<€,
s (O unbound subjects or objects
@<«tp—0O O‘—tpfd)_tp@—).
Part; Part,

Fig. 14 The partition of N B}

5.3.2 Inner-part modification

This step aims to modify inappropriate directions and RDF terms in triple patterns shared
on the same subject. For each Part; € N B’, ANNA detects each triple pattern tp; € Part;
by adding tp; to a detecting BGP d Part; in an orderly manner and issuing d Part; to D.
If [dPart;]p # @, then tp; will be marked as normal. If [d Part;]p = @, then tp; is an

@ Springer

M. Wang et al.

: i I tps
— % tps—————————- » | Reverse(tps) Part,: | Reverse(tps)

tps tps

dPart;: 0—>®@ tps

®

Itpslp # @ 3 [tpg xitps]lp =@ [tps < Reverse(tps)|p # @
© | @

Fig. 15 Detection and modification process of tps5 in N Bi

inappropriate triple pattern and should be modified. Note that RDF terms specified by 1y,
in tp; should not be modified. The subject of ¢p; shared by other triple patterns in Part;
cannot be modified.

Now, we describe the modifications for the inner-part inappropriate triple patterns. Given
an inappropriate triple pattern tp; € Part; and Part; € NB', [d Part;]p = @ after adding
tpjtodPart;.

Direction Modification ANNA uses Reverse() (cf. Sect. 4.1) and verifies whether
[dPart;]p = @ after adding Reverse(tp;) into d Part;. If [d Part;]p # @, ANNA will
further determine whether 3Part, € N B’, which connects to Reverse(tp ;) with S-S o< If
such Part; exists, then Reverse(tp;) will be added to Part; to make the inner-part mod-
ification; otherwise, Reverse(tp;) will be taken out from d Part; to make the inter-part
modification in the next step.

For instance, tps of Parts is in an inappropriate direction, as shown in Fig. 14. Figure
15 illustrates the detection and modification process from Steps 1 to 3 with ¢ps. In Step 1,
[tps]p # @ indicates that #pg is normal. In Step 2, 7ps is detected as an inappropriate triple
pattern and Reverse(tps) is an effective modification. In Step 3, Reverse(tps) is added to
Party, and d Party is ready to perform the next detection.

If [NB]p # @, then all directions of predicates in N B are correct (cf. analysis of AND
in Sect. 4.2) and Reverse() will not be applied to any triple patterns in Part; C NB'.

RDF term modification If Reverse(tp;) is added into d Part; but [d Part;] p is still an
empty set, then ANNA will use Modify() to modify an RDF term in #p; and generate a new
tp;., which satisfies [d Part;]p # @ after adding tp} todPart;. Modify() is implemented
by the ontology-based approach, which generates a modified RDF term r’ by performing
RDFS inference rules and ontology on original RDF term r. For example, director in N B can
be modified to producer by applying subproperty rule’ with the film ontologies in DBpedia.

The semantic similarity between r and r’ can be measured by Wu and Palmer similarity
[27] and is defined as

2depth(LCA(r,1"))
depth(r) + depth(r’)’

where LC A(r, 1) is the least common ancestor of and r’ in the ontology of D and depth(r)
is the depth of r in the ontology. If r’ is a variable, then sim(r, r’) = 0.

For inappropriate RDF terms of tp; = (s}, p;, 0;), three cases exist for the modification
of tpj.

sim(r,r') =

(&)

Case 1l p; and o; are already bound to an RDF term in D. Thus, both p; and 0; can be
modified. ANNA will then choose the RDF term r* which satisfies

r* = argmax sim(r, Modify(r)), ©

rE{()/,p_,'}

7 http://www.w3.org/TR/rdf-schema/.

@ Springer

http://www.w3.org/TR/rdf-schema/

Answering why-not questions on SPARQL queries

.(-tpi—?—tpz—). ?—tpx—b.
t*p‘ Reverse(tp,)
Part, Part; @ bound subjects or objects
” . .
Reverse(tps) (O unbound subjects or objects
o« p—@ 0—tr—>®
Parts Part,

Fig. 16 Inner-part modification of N Bi

and use Modify(r*) to generate the new triple pattern tp/,..

Case 2 p;isbound, o; is a variable. ANNA will use Modify(p;) to generate the new triple
pattern tp;.

Case 3 p; isavariable, o; is bound. ANNA will use Modify(o;) to generate the new triple
pattern tp’/..

Efficiency optimization To improve the efficiency of inner-part modification, the procedure
of detecting triple patterns has three strategies:

(i) Triple patterns that contain expected RDF terms of j,, should be detected first (e.g.,
tp1 in Example 8), because ANNA should first determine triple patterns that contain
expected RDF terms which are normal.

(i) If a triple pattern tp; € Part; is inappropriate, then ANNA will modify tp; to tp} and
determine [Part;]p # & (note that this is not [d Part;]p # &) with the new tp}.
If [Part;]p # &, ANNA will terminate the detection of Part;.

(iii) The efficiency of the detecting procedure varies by the orders of selecting triple patterns
to detect. The order of selecting triple patterns to be detected impacts the efficiency of
detection procedure. To improve the efficiency, we implemented the heuristic in [30]
for the selection order of triple patterns:

(sj, pj.0j) <(pj,oj) <{sj,pj, N <(s;,?,0j)
< (2, p;, N <(2%0)<(s;,7,7) < (77,

where the triple pattern on the left side of < is more selective than the one on the right side of
<, s}, pj,oj represent subject, predicate and object, and ? refers to a variable. In the above
heuristic, (1) the fewer variables a triple pattern has, the more selective it is likely to be; (2)
a triple pattern with unbound subjects is more selective than a triple pattern with unbound
objects or predicates.

After all triple patterns are detected, the unbound variable ?x € Part; will be bounded
according to 7o, [Part;] p. Figure 16 shows the result of inner-part modification of N By. All
subjects and objects are bound.

5.3.3 Inter-part modification

After inner-part detection and modification of triple patterns, this step aims to modify inap-
propriate RDF terms in triple patterns which connect different parts of N B’.

ANNA first merges Part; € N B’ by processing the S-O > or O-O < between different
parts. Consider a S-O < or O-O < between Part; and Part, of N B, their shared subject or
object is denoted by c. After inner-part modifications, c is already bounded by 7. [Part;] p

@ Springer

M. Wang et al.

.<—tp5—’—tpz—> ’—tpx—>.

tp; Reverse(tp,)
@ bound subjects or objects

.‘—tw—.\
Reverse(tp 3)

\ .—tpe—P.

Fig. 17 Merging sub parts of N B}

(O unbound subjects or objects

‘7person - t]; /"Partg,
. =~ /’—F’,—(“__--7 @ bound subjects or objects
Partz ‘—Reverse (tm)-?‘ e bl

(T

(O unbound subjects or objects

~ R 1 =~

Modifying #p,' predicate evf”e(li.

di = Part3 b
irector to producer

/‘
o, —»Q,/\

fPi
Fig. 18 Inter-part modification of N B’4

in Part; and . [Part;]|p in Part, If w.[Part;]|p < n.[Part;]p # &, ANNA will merge
Part; and Part, by connecting the related triple patterns with S-O »< or O-O <, and ¢ will
be bounded by w.[Part;]p 0= 7w [Part;] p before detecting the next inter-part connection.
Figure 17 shows the result of merging all Part; € N Bz/t in Example 8.

For the unconnected S-O < and O-O <, ANNA will locate the shared node ¢ in NB’.
For each predicate p that connects to ¢, ANNA will use Modify() to modify p to p’, which
satisfies all S-O <, and O-O < on ¢ can be merged together if p is replaced with p’. ANNA
will choose the predicate p* satisfying

p* = arg max sim(p, Modify(p)), (7
peltplcetpntpePart;}

and use Modify(p*) to modify NB'.

For instance, ?person is shared by Part,, Part; and Parts in N BA’f, as shown in
Fig. 18. ?person fails to connect Party, Part; and Party because moperson[Partz]p <
Toperson[Part3]p ©<t Wyperson[Parta]l p=9. Party, Part3, and Part, will be connected
by ?person if the director of tps is modified to producer, and w9person[Partz2]p <
T2 person [Part3]p < T2 person [Parts]p # @.

Finally, a modified BGP m N B’ of N B’ will be returned as the explanation for the why-not
question to the user, with which the user can refine the initial BGP N B. Figure 19 shows the
mN By for N By, which indicates that the director of Alice Through the Looking Glass is not
Tim Burton, and the direction of director in initial SPARQL query is inappropriate.

5.4 Identifying inappropriate operators
The module of identifying inappropriate operators (Module III) aims to address why-not

questions caused by inappropriate operators. The input of this module is a set of mappings
[N B'] p. Each mapping uyp € [N B']p contains the expected mapping jiy.

@ Springer

Answering why-not questions on SPARQL queries

@<« 5—’—tpz—>’—tps—>0
Ll tp4 @ bound subjects or objects

v v
Q<tp—@—-1p;>@—P—>@ (O unbound subjects or objects
tpy' =<’film2 producer ?person>
tp;' =<?filml director ?person>

Fig. 19 The modified BGP mN B4

|
| Vv €[NBlp | OR h
} Whether |
}V#\EQ\:#\,@#NB’} ‘
,,,,,,,,,,,, J
AN > N Parser Tree

7 (P)

Py P, P; Py J
—» : identifying traversal plan

Fig. 20 Parser tree t(P) of Q5 in Example 9

As analyzed in Sect. 4.2, MINUS and FILTER are only two questionable operators that
can eliminate expected mappings from the query processing. Therefore, ANNA will only
compare each mapping uyp € [NB']p with MINUS or FILTER’s output via post-order
traversal on the parse tree T(P) of Q.

Given a SPARQL query Q (SELECT S WHERE P), a why-not question (1., the necessary
BGP N B for py,, and [NB']p # @, we propose the algorithm Identifying Inappropriate
Operators, whose pseudocode is presented in Algorithm 3. The identification procedure is
illustrated with Example 9 as follows:

Example 9 Given a SPARQL query Qs, the graph pattern P of Qs is og((P; \ P2) <
(P3 \ Py)). The necessary BGP N B is P| >< P3 and N B’ is generated from N B according
to iy, [NB'lp # @,Yunp € [NB'[p : itw S pnp-

First, the parse tree T (P) is constructed by parsing Q [28] (Line 2). For instance, the T (P)
of Qs in Example 9 is shown in Fig. 20.

Next, a multiset [15] of FILTER and MINUS operators, O P, can be screened from 7 (P)
by post-order traversal on 7(P) (Line 3). As shown in Fig. 20, O P of Qs in Example 9 is {
MINUS \, MINUS \, FILTER o }.

Lines 418 identify inappropriate operators. For each op € O P, its output £2,), is a set of
mappings (Line 5). For uyp € [NB']p,if Virop € 20p : top ;(_ unp’, then op filters out
wn g from query processing (Line 7).

If the inappropriate op is FILTER with the filter condition R, then the tuple (F/LT ER(R),
) will be added into the explanation ¥ (Lines 8—10).

If op is MINUS, then ANNA first locates the right child of MINUS, finding the compatible
mapping (cf. Definition 4) V“?v g Of uyp in the output of the right child (Lines 11-14). The
tuple (MINUS(M;VB,), unp) can be added to ¥ (Line 15). For instance, consider the first

@ Springer

M. Wang et al.

Algorithm 3 Identifying inappropriate operators

Input: SPARQL query Q, expected mappings [N B'] p
Output: Explanation v

1: Initialization: t(P) = @, OP = &, ¢ = &

2: t(P)<«ParseQuery (Q); //return a parser tree

3: O P <«PostOrderTraversal(t (P));

4: for allop € OP do

5: £2op <GetOutputOfOperator(op);

6: forall uyp € [NB']p do

7: for all Viuop € Q20p : tiop € wyp do

8: if op is 0 (R) then

9: Y.add(FILTER(R),uNB);

10: end if

11: if op is \ then

12: $2; <—GetOutputOfOperator(op — rightchild);
13: Wy g <FindCompatibleMapping($2y./4y ');
14: Y.add(MINUS(1ty g5 N)3

15: end if

16: end for

17: end for

18: end for

19: return .

MINUS of O P in Example 9, ANNA first locates P, in t(P) and then finds the corresponding
n2 € [Pa]lp : na ~ uyp- The tuple (MINU S(u2), oy) Will be added to explanation .

The cost of Algorithm 3 is O (n x m x 0), where n is the number of operators in T (P), m
is the size of [N B'] p, and o is the largest output set for any operation in 7 (P).

6 Experiments

Our proposed explanation model, ANNA, was evaluated in terms of effectiveness and effi-
ciency by performing experiments on two real-world RDF datasets. In particular, we wish to
answer i) how well our method compares to the competing techniques?”, which is evaluated
in Sect. 6.1. Given this, the next question naturally raised would be ii) is the proposed model
efficient? does it scale to large knowledge graph?” To investigate this, we explore our model
on two real-world large knowledge graphs, which is presented in Sect. 6.2. The detailed
experimental settings of our evaluations are described as follows.

Datasets Two RDF datasets, namely English DBpedia and LinkedMDB, were used in the
experiments. The DBpedia dataset is the nuclear dataset of Linked Data and con-
tains more than 4.58 million entities and 583 million RDF triples, among which
approximately 50,000 entities are typed as films. The LinkedMDB dataset contains
503,000 RDF entities and 6.14 million RDF triples.

Query set It is important to note that, to the best of our knowledge, our work is the first on

SPARQL why-not questions. There is no benchmark query set for the evaluation.
To address this, we create a SPARQL query set and made it publicly available (see
footnote 8 on this page). Fifty SPARQL queries® about films were constructed for
evaluation. As we analyzed in Sect. 4, SPARQL why-not questions may happen

8 http://kfm.skyclass.net/anna/queryset.html.

@ Springer

http://kfm.skyclass.net/anna/queryset.html

Answering why-not questions on SPARQL queries

at the triple pattern level or the query operator level, and the query set should
include diverse queries to cover all kinds of why-not scenarios. Therefore, the
query set has been designed to focus on the following two aspects.

(1) For the triple pattern level, the query set has been designed to include queries with
inappropriate direction, and inappropriate RDF terms.

(2) For the query operator level, the query set has been designed to include queries with the
operator AND, OPTIONAL, MINUS, UNION, different operators blending together, as
well as containing FILTER conditions.

Six volunteers (graduate students in computer science, but none of them know the details
of ANNA) were asked to pose the fifty SPARQL queries independently over LinkedMDB.
Volunteers issued why-not questions by specifying missing items that were supposed to be
shown up but were not in the final result. Volunteers may issue different why-not questions
for the same SPARQL query, as we analyzed in Example 1.

A total of 61 why-not questions (w1-w61) were obtained from the 42 SPARQL queries,
among which 44 why-not questions were caused by inappropriate triple patterns, and the
remaining 17 were caused by inappropriate operators.

Baselines In addition, there is no baseline method that can be readily applied; hence, in our
experiment, we only compare with the modified versions of an operator-based
model based on [7] (denoted by OM). The operator-based model in [7] is often
used as the baseline for answering why-not questions in relational databases. The
results show that our explanation model significantly outperforms OM. ANNA
and OM were written in Java. Apache Jena® was utilized as a fundamental toolkit
to build ANNA [36]. All experiments were conducted on a quadcore 3.10 GHz
PC operating on Windows 7 with 8GB of RAM and a 1TB hard disk.

6.1 Effectiveness of ANNA
6.1.1 ANNA versus OM

By analyzing the explanations for 61 why-not questions, we observed that OM may be not
applicable for some cases. ANNA can generate more useful explanations than OM for users
to fix original queries. Owing to limitations of space, we selected five typical queries qg . . . g5
from query set to illustrate the evaluation, as shown in Table 2. In order to include all why-not
scenarios, they should contain FILTER (gq1), OPTIONAL (q>), MINUS (g3), UNION (q4)
and inappropriate direction (gs), respectively. The AND is the basic operator to form basic
graph patterns, and it is contained by all g1 . .. g5 queries. Tables 3 and 4 show the why-not
questions and explanations on g . .. gs, where w,,; denotes the why-not question on query
qi,i€[1,5],j>1.

Applicability If the absence of the expected mapping occurs at the MINUS or OPTIONAL
graph patterns, then OM is not applicable as opposed to ANNA, such as Ly, ,

Mws; -
Usefulness (1) Consider pty,,,, OM simply identified FILTER(?date > “1990") as the expla-
nation. However, the explanation computed by ANNA not only points out that
My, 1s excluded because of the condition on ?date, but also reveals the addi-
tional information that the missing film Batman was actually released in 7989.

9 http://jena.apache.org.

@ Springer

http://jena.apache.org

M. Wang et al.

Table 2 Five SPARQL queries g ... g5

qi Query Graph pattern
q1 To find films directed by Tim P1 = {(?film name ?filmname).
Burton since 1990. (?film released ? date).
(2 filmname,?date) (?film director ?person)}
(%2dare>=1990" P2 = {(?person name “Tim Burton”)}
(P1 > P2))
q2 To retrieve the actor and his P1 = (?actor name ? actorname)
country if he won Academy P2 = (?actor type actor.)
Male Best Actor. P3 = {(?actor country ? country).
T{%actorname, Icountry} (7actor gender male)}
((P1 =< Py) > P4 = {(?actor haswon “Academy
(P3 < Py)) Award for Best Actor’)}
q3 To find romantic disaster films P1 = {(?film name ?filmname).
released after 2000. (?film type Romantic films) .
9 . -
T2 filmname,date)]()2 Elm,:yfﬂe DlslaSterdh,’lgls)}
(P1\ (G2gare=2000" (P2))) = (? film released ? date)
q4 To find war or road films released P1 = {(?film type War films)}
in America. P2 = (?film type Road films)
T2 filmname) P3 = {(?film name ? filmname).
((P{ U Py) > P3) (?film country “United States)}
qs To find the female directors who P1 = (?director director ? film)

directed and acted in the same
film, and the film won the
Academy Best Picture.

P2 = (?director actedin ? film)

P3 = (?director name ? directorname)
P4 = (?director gender female)

P5 = {(?film name ? filmname).

(? film haswon “Academy Award for
Best Picture”)}

{2 directorname,? filmname}
(Pp o< Py > P3
> Py < Ps)

Table 3 Why-not questions on

q1---95

@ Springer

K ‘Why-not questions
Hawy {?filmname — “Batman’'}
Hwiy {2date — ©“1995,” ? filmname — *“Batman Forever”}
My {?actorname — “Spike Lee"}
Hwyy {?actorname — “Leonardo DiCaprio,”
2country — “United States'}
Haws {? filmname — “The English Patient”}
My {?filmname — “Titanic"}
Mg (?filmname — “Atonement’}
Hws) {2 filmname — “Argo}

With this important information, the user can refine FILTER condition to FILTER
(?date > “1989"), and Batman will show up in the query result. (2) Consider
Hwias Mwyys Mwsp> Mwy and iy, OM identified the operator AND between
two triple patterns as the explanation. However, users are more concerned about
which parts of triple patterns failed to retrieve the expected mapping. With the
suggested modifications by ANNA, the user can determine Why 4y, Uy s Hws »
My, and fLy,, are missing.

Answering why-not questions on SPARQL queries

Table 4 Why-not questions, and explanations generated by ANNA and QM

Mw;; why-not questions ANNA oM

{(FILTER(2date > “1990"),
(2ilm — f1333,
wy, {?filmname — “Batman’} 2date — <1989, FILTER
Iperson — p2556,
filmname — “Batman’’}}
P’ = {(?film name ? filmname).
{2date — “1995", (?film released ? date).
?filmname — “Batman Forever'} (?film producer ? person).
(?person name “Tim Burton”)}

T AND

P’ = {({?actor name ? actorname).

(?actor type director)} AND

Hwy, {lactorname — “Spike Lee’}

P’ = {(?actor name ? actorname).

(?actor type actor).
{?actorname — *“Leonardo DiCaprio,” (?actor country ? country).
2country — “United States'} (?actor gender male).

(?actor haswon “Film awards

for lead actor”)}

Hwyy Not applicable

P’ = {(?film name ?filmname).
Hwsy, (?filmname — (?film type Romantic films). AND
“The English Patient”} (?film type War films)}

{((MINUS({?film — 125371,
date — “1997"}),
{film — (25371,
ilmname — “Titanic”}}

P’ = {(?film type War films).

(?film name ? filmname).

(?film country “UK”)}

P” = {(?film type Romantic films).
(?film name filmname).

(?film country “UK")}

P’ = {(?film director ?director).
(?director actedin ?film).
(?director name ? directorname).
tws, {?filmname — “Argo”} (?director gender male). AND
(?film name ?filmname).
(?film haswon “Academy
Award for Best Actor”)}

Hwyy {?filmname — “Titanic") Not applicable

wy {?filmname — “Atonement”} AND

In summary, ANNA can identify where the expected mapping is missing and generate
more informative and useful why-not explanations than OM.

6.1.2 Metrics on the modified graph pattern

For the why-not questions caused by inappropriate triple patterns, the explanations are mod-
ified graph patterns. A good modified query should be similar to the original query and have
few extra items in the result [18]. We measure the effectiveness of a modified graph pattern
by using two metrics.

Similarity metric Given a graph pattern P and its modified graph pattern P’, the similarity
between P and P’ can then be computed as

@ Springer

M. Wang et al.

Table 5 The similarities and the

imprecision values of modified mk‘“ Hw smPRE) mpP)
mhy, Py, 0.814 0.382
m, Ly 0.932 0.193
ml, . 0.933 0.167
mllml g, 0.935 0.212
m%m g, 0.891 0.25
mh, s, 0.958 0

n
simP(P, Py =Y sim(ri.r))/n . ®

i=1
where r; € P, r] € P’, r; and r/ are RDF terms. sim(r;, r]) is computed according to
Equation (5), and 7 is the number of RDF terms in P. The closer to 1 sim P(P, P’) is, the
better P’ is.

Imprecision metric The modified graph pattern P’ should be as precise as possi-
ble in terms of its result. Ideally, [P’]p should contain only existing mappings in [P]p
and one mapping u' that satisfies &' 2O . For instance, u' in Example 1 may be
{2film — f1333,2%date — “1990,” 2person — p2556,?filmname — “Batman’},
which contains wu,, = {? filmname — “Batman’}. Any additional mappings in [P’] p are
considered irrelevant results that should be minimized. Given a P’,let R C [P’] p denote the
mappings that contain the why-not question p,,. We follow [33] and define the imprecision
value for P’ as the ratio of the number of irrelevant mappings in [P’]p to the number of
mappings in [P']p:

I[P']p — R — [P]pl
I[P]pl

impP(P, P') =)
The closer to 0 imp P(P, P’) is, the better.

Table 5 reports the similarities and imprecision values of modified graph patterns for (i,
Hwaps Mwys Mwsps Mwyy and fhys, , where mﬁ)i_ denotes the modified graph pattern for py,;
(UNION may lead to more than one modified graph pattern for a why-not question, e.g,
Mgy)-

For 44 why-not questions caused by inappropriate triple patterns, ANNA generated 48
corresponding modified graph patterns. The average of similarity is approximately 0.91,
and the average value of imprecision is approximately 0.17 (11 modified graph patterns
imprecision values are 0). Modified graph patterns generated by ANNA have good quality
in terms of both similarity and imprecision metrics.

6.2 Efficiency evaluation

6.2.1 ANNA versus OM

In this section, we first measure the execution time required by ANNA to generate explana-
tions on LinkedMDB. Then, we compare the efficiency of ANNA with OM.

Performance of modifying graph patterns We measure the modification time for the
44 why-not questions caused by inappropriate triple patterns. The experimental result shows

@ Springer

Answering why-not questions on SPARQL queries

6000———T—7T—7T 7T 7T

5000{- C]ANNA

I om

4000

30001

time/ms
]

20001

1000+

wil2 3 7 9 11 12 14 16 18 19 22 24 25 27 29 30 31 32 33 37 43 45 47 51 55 58 60
Why-not questions

Fig. 21 Time overhead of ANNA and OM

that the modified graph patterns for explaining why-not questions can be generated in less
than 6 s, the average time is 3.5 s, and the maximum time is 5.3 s. This amount of time is
tolerable considering that users are eventually provided an explanation.

Performance of identifying inappropriate operators We measure the execution time
of identifying process for the 17 why-not questions caused by inappropriate operators. The
experimental result shows that all inappropriate operators for a why-not question can be
identified in less than 4 s, the average time is 1.8 s, and the maximum time is 3.6 s. This
amount of time is acceptable for users to obtain explanations.

The capability of ANNA to generate an explanation within a reasonable amount of time
is attributed to the divide-and-conquer strategy adopted by ANNA. The query level where a
why-not question occurs is first identified by ANNA. Explanations are then generated at the
corresponding level. As a result, complex query processing is avoided.

ANNA versus OM Figure 21 reports runtimes for ANNA and OM on 28 out of 61 why-
not questions (for the others, OM is not applicable). Among these, 17 why-not questions are
caused by inappropriate operators, and others are caused by inappropriate triple patterns. For
comparison purposes, we only measure the runtime of inappropriate triple patterns detection
and ignoring the time of modification time. We observe that OM is slower than ANNA,
because ANNA adopts the BGP partition to identify triple patterns in parallel and detects
questionable operators (MINUS or FILTER) only during the bottom-up traversal.

We then see what occurs when OM is slower than—but comparable to—ANNA, such
as w2, w3, wi2, w24, w27 and w37 in Fig. 21. In OM, the expected RDF terms are pruned
out by AND between two triple patterns, which is close to the leaf level of the parse tree;
hence, the bottom-up traversal of the tree can stop early. ANNA cannot benefit from such an
early termination. Although the time complexities of generating these explanations by OM
and ANNA are identical, ANNA can retrieve explanations attached with more information
to users. (e.g., [y, in Sect. 6.1.1).

6.2.2 Sensitivity analysis on different scale datasets

Sensitivity analysis of modifying graph patterns Figure 22 shows the graph pattern
modification time for the 44 why-not questions caused by inappropriate triple patterns on

@ Springer

M. Wang et al.

0T 1

[ILinkedMDB)
5000 [- DBpedia -

time/ms
T
1

2000 -

w24 5 68 9 10131517 18 19 20 21 22 23 26 28 29 31 33 34 35 36 38 39 40 41 42 44 45 46 48 49 50 51 52 53 54 56 57 58 59 61
Why-not questions

Fig. 22 Time overhead of modifying graph patterns on LinkedMDB and DBpedia

4000 T T T T T T T T T T T T T T T T

3500 [LinkedMDB
30001 -DBpedia

2500

T

2000

time/ms

1500

1000~

500

w:l 3 7 11 12 14 16 24 25 27 30 32 37 43 47 55 60
Why-not questions

Fig. 23 Time overhead of identifying inappropriate operators on LinkedMDB and DBpedia

LinkedMDB and DBpedia. The average time on DBpedia increased slightly more than that
on LinkedMDB, although the size of DBpedia is approximately 90 times larger than that of
LinkedMDB. The reason is that modification time depends on the size of the original graph
pattern and the ontology of RDF datasets. Two experiments share the same size of the original
graph pattern, and the film ontologies in LinkedMDB and DBpedia have a similar scale.
Sensitivity analysis of identifying inappropriate operators Figure 23 shows the exe-
cution time of identifying process for the 17 why-not questions caused by inappropriate
operators on LinkedMDB and DBpedia. The runtimes from LinkedMDB and DBpedia have
no significant change, thereby indicating that the scale of the underlying dataset has little
effect on the overall runtime of identifying inappropriate operators. At the query operator
level, the main factor that influences the efficiency of identifying inappropriate operators is
the size of mappings (an input of Algorithm 3), not the entire RDF graphs in datasets.
Figures 22 and 23 show that ANNA is not sensitive to the scale of RDF datasets.

@ Springer

Answering why-not questions on SPARQL queries

In summary, experimental results of effectiveness show that ANNA is more applicable to
SPARQL operators than OM model. And ANNA can also generate modified graph patterns in
good quality in terms of both similarity and imprecision metrics. Hence, ANNA can generate
high-quality explanations for users. For efficiency, the experimental results show that ANNA
can answer why-not questions within a reasonable amount of time, at both triple pattern and
query operator levels.

7 Conclusion

In this study, we formalized the problem of answering why-not questions on SPARQL queries
for the first time and proposed an explanation model called ANNA. ANNA can generate
logical explanations at the triple pattern and query operator levels. Efficient algorithms were
designed to implement three modules in ANNA, including computing the necessary BGP,
modifying graph patterns and identifying inappropriate operators. ANNA was evaluated on
two real-world RDF datasets. Experimental results proved that ANNA could generate high-
quality explanations within a reasonable amount of time.

In the future, we will make ANNA to handle exception cases in practice. For instance, a
user can be wrong and ask an aberrant why-not question and the explanation is an empty set.
Another potential direction for future research is to improve the graph pattern modification
method to identify and deliver to the user the most relevant one with the multiplicity of
explanation.

Acknowledgements This work is sponsored by the Fundamental Theory and Applications of Big Data with
Knowledge Engineering under the National Key Research and Development Program of China with Grant No.
2016YFB1000903; National Science Foundation of China under Grant Nos. 61721002, 61672419, 61672418,
61532004 and 61532015; MOE Research Center for Online Education Funds under Grant No.2016YB165;
Ministry of Education Innovation Research Team No. IRT17R86.

References

1. Baget JF, Benferhat S, Bouraoui Z, Croitoru M, Mugnier ML, Papini O, Rocher S, Tabia K (2016) A
general modifier-based framework for inconsistency-tolerant query answering. In: KR, pp 513-516
2. Bhowmick SS, Sun A, Truong BQ (2013) Why not, wine? towards answering why-not questions in social
image search. In: Proceedings of the ACMMM. ACM, pp 917-926
3. Bidoit N, Herschel M, Tzompanaki K (2014) Query-based why-not provenance with nedexplain. In:
Proceedings of the EDBT
4. Bienvenu M, Bourgaux C, Goasdoué F (2016) Explaining inconsistency-tolerant query answering over
description logic knowledge bases. In: AAAI pp 900-906
5. Bienvenu M, Rosati R (2013) Tractable approximations of consistent query answering for robust ontology-
based data access. In: IJCAI, pp 775-781
6. Calvanese D, Ortiz M, Simkus M, Stefanoni G (2013) Reasoning about explanations for negative query
answers in dl-lite. J Artif Intell Res 48:635-669
7. Chapman A, Jagadish H (2009) Why not? In: Proceedings of the ACM SIGMOD. ACM, pp 523-534
8. Chen L, Lin X, Hu H, Jensen CS, Xu J (2015) Answering why-not questions on spatial keyword top-k
queries. In: Proceedings of the ICDE. IEEE, pp 279-290
9. CuiY, Widom J (2003) Lineage tracing for general data warehouse transformations. VLDB J 12(1):41-58
10. Damadsio CV, Analyti A, Antoniou G (2012) Provenance for sparql queries. In: Proceedings of the ISWC.
Springer, pp 625-640
11. Dividino R, Sizov S, Staab S, Schueler B (2009) Querying for provenance, trust, uncertainty and other
meta knowledge in RDF. Web Semant Sci Serv Agents World Wide Web 7(3):204-219
12. Eiter T, Fink M, Schiiller P, Weinzierl A (2014) Finding explanations of inconsistency in multi-context
systems. Artif Intell 216:233-274

@ Springer

M. Wang et al.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Elbassuoni S, Ramanath M, Schenkel R, Sydow M, Weikum G (2009) Language-model-based ranking
for queries on RDF-graphs. In: Proceedings of the CIKM. ACM, pp 977-986

Elbassuoni S, Ramanath M, Weikum G (2011) Query relaxation for entity-relationship search. In: Pro-
ceedings of the ESWC. Springer, pp 62-76

Gallego MA, Fernandez JD, Martinez-Prieto MA, de 1a Fuente P (2011) An empirical study of real-world
sparql queries. In: Proceedings of the USEWOD201 1, Hydebarabad, India

Gao Y, Liu Q, Chen G, Zheng B, Zhou L (2015) Answering why-not questions on reverse top-k queries.
In: Proceedings of the VLDB Endowment, vol. 8. VLDB Endowment, pp 738-749

Group, W.C.S.W. (2013) Sparql 1.1 overview. http://www.w3.org/TR/sparqll 1-overview/

He Z, Lo E (2014) Answering why-not questions on top-k queries. IEEE Trans Knowl Data Eng
26(6):1300-1315

Herschel M, Hernandez MA (2010) Explaining missing answers to spjua queries. In: Proceedings of the
VLDB endowment, vol. 3. VLDB Endowment, pp 185-196

HuangJ, Chen T, Doan A, Naughton JF (2008) On the provenance of non-answers to queries over extracted
data. In: Proceedings of the VLDB endowment, vol. 1. VLDB Endowment, pp 736-747

Huang H, Liu C, Zhou X (2008) Computing relaxed answers on RDF databases. In: Proceedings of the
WISE. Springer, pp 163-175 (2008)

Hurtado CA, Poulovassilis A, Wood PT (2006) A relaxed approach to RDF querying. In: Proceedings of
the ISWC. Springer, pp 314-328

Islam MS, Zhou R, Liu C (2013) On answering why-not questions in reverse skyline queries. In: Pro-
ceedings of the ICDE. IEEE, pp 973-984

Islam MS, Liu C, Li J (2015) Efficient answering of why-not questions in similar graph matching. IEEE
Trans Knowl Data Eng 27(10):2672-2686

Kiefer C, Bernstein A, Lee HJ, Klein M, Stocker M (2007) Semantic process retrieval with iSPARQL.
In: Proceedings of the ESWC. Springer, pp 609-623

Lembo D, Lenzerini M, Rosati R, Ruzzi M, Savo DF (2015) Inconsistency-tolerant query answering in
ontology-based data access. Web Semant Sci Serv Agents World Wide Web 33:3-29

Miltersen PB, Radhakrishnan J, Wegener I (2005) On converting CNF to DNF. Theor Comput Sci
347(1):325-335

Pérez J, Arenas M, Gutierrez C (2009) Semantics and complexity of sparql. ACM Trans Database Syst
34:1-45

Saleem M, Ali MI, Hogan A, Mehmood Q, Ngomo ACN (2015) LSQ: the linked SPARQL queries dataset.
In: ISWC, pp 121-131

Schmidt M, Meier M, Lausen G (2010) Foundations of SPARQL query optimization. In: Proceedings of
the ICDT. ACM, pp 4-33

ten Cate B, Civili C, Sherkhonov E, Tan WC (2015) High-level why-not explanations using ontologies.
In: Proceedings of the ACM PODS. ACM, pp 31-43

Theoharis Y, Fundulaki I, Karvounarakis G, Christophides V (2011) On provenance of queries on semantic
web data. IEEE Internet Comput 15(1):31-39

Tran QT, Chan CY (2010) How to conquer why-not questions. In: Proceedings of the ACM SIGMOD.
ACM, pp 15-26

Vidal ME, Ruckhaus E, Lampo T, Martinez A, Sierra J, Polleres A (2010) Efficiently joining group
patterns in sparql queries. In: Proceedings of the ESWC. Springer, pp 228-242

Wang M, Chen W, Wang S, Liu J, Li X, Stantic B (2017) Answering why-not questions on semantic
multimedia queries. Multimed Tools Appl 1-25. https://doi.org/10.1007/11042-017-5151-6

Yao S, Liu J, Wang M, Wei B, Chen X (2015) Anna: answering why-not questions for SPARQL. In
Proceedings of the ISWC (Demos)

Zhang X, Xiao G, Lin Z, Van den Bussche J (2014) Inconsistency-tolerant reasoning with OWL DL. Int
J Approx Reason 55(2):557-584

Zhou X, Gaugaz J, Balke WT, Nejdl W (2007) Query relaxation using malleable schemas. In: Proceedings
of the ACM SIGMOD. ACM, pp 545-556

@ Springer

http://www.w3.org/TR/sparql11-overview/
https://doi.org/10.1007/11042-017-5151-6

Answering why-not questions on SPARQL queries

Meng Wang is currently working toward the PhD degree in com-
puter science at Xi’an Jiaotong University. He received the BS degree
in Computing Science from Sichuan University in 2012. His research
interests include SPARQL query language and data mining.

Jun Liu is currently a professor in the Department of Computer
Science, Xi’an Jiaotong University. He has published more than 70
research papers in various journals and conference proceedings. He
received the PhD degrees from Xi’an Jiaotong University, China, in
1995, 1998 and 2004, respectively, all in computer science. His main
research interests include text mining, data mining and e-learning.

Bifan Wei is currently an engineer in the Department of Computer
Science, Xian Jiaotong University. He received the BS degree in Aero-
craft Dynamics Engineering from Beijing University of Aeronautics
and Astronautics in 2000, the PhD degree in computer science in 2014
from Xian Jiaotong University, China. His research interests include
web data mining, faceted search and taxonomy learning.

@ Springer

M. Wang et al.

@ Springer

Siyu Yao is currently working toward the PhD degree in computer sci-
ence at Xian Jiaotong University. She received the BS degree in Com-
puting Science from Xian Jiaotong University in 2014. Her research
interests include SPARQL query language and data mining.

Honwei Zeng is currently working toward the PhD degree in Com-
puter Science at Xi’an Jiaotong University. He received the BS degree
in Computing Science from Harbin Engineering University in 2015.
His research interests include natural language processing and dialogue
system.

Lei Shi is currently working toward the PhD degree in computer sci-
ence at Xian Jiaotong University. She received the BS degree in Com-
puting Science from Xian Jiaotong University in 2014. Her research
interests include SPARQL query language and data mining.

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.

	Answering why-not questions on SPARQL queries
	Abstract
	1 Introduction
	1.1 Why-not questions on SPARQL queries
	1.2 Limitations of existing explanation models
	1.3 Overview of ANNA
	1.4 Contributions and organization

	2 Related work
	2.1 Explanation models for why-not questions
	2.2 Inconsistency-tolerant query answering
	2.3 Query relaxation for RDF data
	2.4 Provenance for SPARQL queries

	3 Problem formulation
	3.1 Preliminaries
	3.2 SPARQL why-not questions

	4 Problem analysis
	4.1 ``Why-Not'' at the triple pattern level
	4.2 ``Why-Not'' at the query operator level

	5 Explanation model
	5.1 Framework
	5.2 Computing the necessary BGP
	5.3 Modifying graph patterns
	5.3.1 BGP partition
	5.3.2 Inner-part modification
	5.3.3 Inter-part modification

	5.4 Identifying inappropriate operators

	6 Experiments
	6.1 Effectiveness of ANNA
	6.1.1 ANNA versus OM
	6.1.2 Metrics on the modified graph pattern

	6.2 Efficiency evaluation
	6.2.1 ANNA versus OM
	6.2.2 Sensitivity analysis on different scale datasets

	7 Conclusion
	Acknowledgements
	References

