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Abstract—Image-sentence matching is a challenging task for
the heterogeneity-gap between different modalities. Ranking-
based methods have achieved excellent performance on this
task in the past decades. Given an image query, these methods
typically assume that the correct matched image-sentence pair
must rank before all the other mismatched ones. However,
this assumption may be too strict and prone to the overfitting
problem, especially when some sentences in a massive database
are similar and confusable with one another. In this paper, we
relax the traditional ranking loss and propose a novel deep multi-
modal network with a top-k ranking loss to mitigate the data
ambiguity problem. With this strategy, query results will not
be penalized unless the index of ground truth is outside the
range of top-k query results. Considering the non-smoothness
and non-convexity of the initial top-k ranking loss, we exploit
a tight convex upper bound to approximate the loss and then
utilize the traditional back-propagation algorithm to optimize
the deep multi-modal network. Finally, we apply the method
on three benchmark datasets, namely, Flickr8k, Flickr30k, and
MSCOCO. Empirical results on metrics R@K(K=1,5,10) show
that our method achieves comparable performance to state-of-
the-art methods.

Index Terms—Image-sentence matching, Cross-modal re-
trieval, Deep learning, Top-k ranking.

I. INTRODUCTION

Data related to a certain concept typically appear in diverse
modalities with the rapid development of the Internet. Learn-
ing a certain concept from different modality data is beneficial
for human cognition [1]. For example, when we aim to learn
to play tennis, we prefer to find relevant results across various
modalities, such as some articles describing tennis skills,
images illustrating body movements, and videos recording
tennis teaching. Consequently, cross-modal retrieval, where
the queries and results are typically from different modalities,
plays a significant role in numerous real-world applications.
In this paper, we focus on the bi-directional retrieval between
images and sentences, i.e., image-sentence matching task.
Previous studies on this task can be divided into two types,
namely weakly and strongly supervised methods. The former
only requires the image-sentence pairs for training [2], [3]; the
latter demands the category labels for images and sentences to
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better mine their semantics [4]–[6]. The strongly supervised
methods are impractical in the real world because of two
reasons: (1) The labeled images and sentences are not available
due to the annotation cost [7]; (2) the query in the testing stage
may fall outside the categories in the training phase. Therefore,
this study focuses on image-sentence matching with weakly
supervised pair information.

Two main strategies for implementing the image-sentence
matching task are available for past weakly supervised meth-
ods. The first group focuses on learning a common representa-
tions for images and sentences based on canonical correlation
analysis (CCA) [8]. This group seeks the linear or nonlinear
projections by maximizing the correlation between the pro-
jected vectors of images and sentences [9]. These CCA-based
methods have two limitations: 1) They do not maximize the
evaluation criterion related to the ultimate cross-modal ranking
performance [10]; 2) they commonly require high memory
cost to compute the covariance matrix between the entire
images and sentences [11]. For these issues, the second group
aims to minimize a ranking-based loss for image-sentence
matching. Specifically, the ranking-based methods first map
the entire sentences and the given image query to a shared
embedding space, and then compute the relevance scores of the
entire image-sentence pairs. Notably, the traditional ranking
loss forces the correctly matched sentence for the given image
query to be ranked higher than other mismatched ones [12].
Compared with CCA-based methods, on the one hand, these
ranking-based methods reflect the performance of cross-modal
ranking directly. On the other hand, they are more appropriate
for large-scale image-sentence matching without constructing
the data covariance matrix. Thus the ranking-based methods
have attracted increasing attention for their improved interpre-
tation and minimal computational consumption.

The traditional ranking loss commonly assumes that the
query result is correct if and only if the matched instance for
the given query ranks first. This assumption is of course appro-
priate for retrieving from a database only with distinguishable
instances. However, for a large-scale cross-modal retrieval
task, having certain highly similar and confusable instances
in the query database is inevitable. These instances may
deteriorate the training process of the retrieval model if we
continue to use the previous ranking loss. As shown in Figure
1, there are two image-sentence pairs about playing tennis,
i.e. (image1, sentence1) and (image2, sentence2). Although
the first sentence is correctly matched to the first image in
the query database, it can also describe the content of the
second image to a certain extent. Taking the first sentence
as a query, forcing the first image to rank before the second
image is over strict. Thus, for a real-world information retrieval
task with certain indistinguishable data, the traditional ranking
function is inapplicable and may be prone to the overfitting
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Fig. 1: The example of confusable image-sentence pairs.
Although the first sentence is matched to the first image in
the query database, it could also describe the detailed content
of the second image.

problem. Considering the above mentioned issues, we propose
a novel deep top-k ranking loss in a multi-modal network to
mitigate the instance ambiguity problem. Given a query, the
top-k ranking loss allows the correctly matched instance to be
among the largest k query results, rather than be ranked first.
In other words, the top-k ranking loss is not penalized for the
first (k − 1) mismatched instances. This strategy diminishes
the extravagant requirement of previous ranking loss. Three
contributions of this paper are summarized as follows:
• To mitigate the instance ambiguity problem, we propose

a deep multi-modal network with a top-k ranking loss for
large scale image-sentence matching with indistinguish-
able data. This method allows k query to be guessed and
penalizes (n− k) mismatched image-sentence pairs.

• We propose an effective convex upper bound function to
approximate the initial non-smooth and non-convex top-k
ranking loss. Notably, the convex top-k ranking loss does
not increase the time complexity in comparison with the
traditional ranking loss in theory.

• We conduct extensive experiments on benchmark datasets
Flickr8k, Flickr30k, and MSCOCO to illustrate the effec-
tiveness and superiority of the proposed method. The ex-
perimental results demonstrate that our method achieves
comparable performance to state-of-the-art methods.

II. RELATED WORK

A. Image-Sentence Matching

At present, CCA-based methods and ranking-based methods
are two main streams for accomplishing the image-sentence
matching task. Certain methods based on deep learning (DL)
have been proposed recently to learn the semantic representa-
tions for images and sentences effectively.

1) CCA-Based Methods: Several recent studies on image-
sentence matching task are based on CCA. CCA learns the
common representations for images and sentences by mutually
maximizing the correlation between their projections [9].
Kernel CCA (KCCA) is an extension of CCA, which finds
maximally correlated nonlinear projections restricted to repro-
ducing kernel Hilbert spaces with corresponding kernels [13].
Sparse KCCA (SKCCA) [14] incorporates sparsity into KCCA
by penalizing the `1-norm of dual vectors. To improve the
scalability of CCA on large data training, deep CCA (DCCA)

[15] is proposed to optimize the CCA objective function in a
deep learning framework. Hodosh et al. [16] pioneered the ap-
plication of CCA to sentence-based image description, where
the image and sentence features were obtained with minimal
supervision. Gong et al. [17] started with CCA and incorpo-
rated a third view to capture the high-level image semantics,
which accomplished the image-to-image, tag-to-image, and
image-to-tag three-directional information retrieval. Wang et
al. [18] scaled the columns of the CCA projection matrices
by a power of the corresponding eigenvalues, which achieved
a significant improvement on retrieval results. Klein et al.
[19] utilized the CCA algorithm to accomplish the sentence-
image matching task, where the sentences were represented
as the new variants of fisher vectors (FV). Specifically, Yan
et al. [20] proposed a GPU implementation and a novel
strategy to handle overfitting issues for the original DCCA.
Additionally, the CCA algorithm has been utilized in other
fields, such as chemometrics [21], speech processing [22],
[23], and multimodal signal processing [24]. Although CCA
has been confirmed to be a surprisingly effective method for
the image-sentence matching task, it requires high memory
cost to compute the covariance matrix for the entire images and
sentences. Although the proposed DCCA utilizes the stochastic
gradient descent (SGD) algorithm to optimize the original
CCA objective function, it cannot obtain a favorable solution
because covariance estimation in each minibatch is unequal to
real covariance over all data.

2) Ranking-Based Methods: Another notable body of
image-sentence matching tasks is to learn a shared embedding
space based on a ranking loss function. A single-directional
ranking loss ensures that the correct text description ranks
higher than other irrelevant descriptions for a given image.
This ranking loss has been applied in [25], [26] to achieve
image annotation. After that, some researchers have proposed
the bi-directional ranking loss to strengthen the intensity of
single-directional loss [27], [28]. With a given sentence query,
the bi-directional ranking loss adds a margin-based penalty to a
mismatched image when it ranks higher than the matched im-
age [29]. Luo et al. [10] integrated diversity self-paced learn-
ing theory into the bi-directional ranking loss to enhance the
model’s robustness to outliers. To hold the neighborhood struc-
ture within each single-model view, Wang et al. [30] combined
the cross-view bi-directional ranking constraints with within-
view structure-preserving ranking constraints. They [31] also
introduced an appropriate image-sentence pair sampling for
ranking loss to improve the matching performance. Nam et al.
[32] integrated the attention mechanisms into the bi-directional
retrieval through a novel dual attention network. Huang et
al. [33] constructed a selective multi-modal long short-term
memory network (LSTM) with a bi-directional ranking loss
for instance-aware image and sentence matching. Compared
with CCA, the ranking loss function does not require the
construction of the data covariance matrix, which can be
readily utilized for large-scale image-sentence matching tasks.
Nevertheless, the present ranking constraints strictly demand
that the score of matched image-sentence pair is higher than
that of other mismatched image-sentence pairs. This require-
ment is severe because the data ambiguity typically exists
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Fig. 2: Diagram of the image-query-sentence process based on top-k ranking loss. Left: image network (VGG16). Right: text
network (MLP). Center: the top-k ranking loss, where k=2. There are three given image queries and five sentences in query
database. For each given image, we utilize five gray boxes to denote the five relevance scores of image-sentence pairs (i.e. the
score matrix part in the Figure). The larger grayscale represents the larger score. The red box is the score of correct matched
image-sentence pair. We rank the relevant scores for each image query and stipulate that the score of matched image-sentence
pair is higher than the score of 3-th image-sentence pairs by at least a margin of ∆.

when large amounts of image-sentence pairs are used for
training. For this issue, we propose a novel top-k ranking loss
to better accomplish image-sentence matching in this paper.

3) DL-Based Methods: Deep learning has achieved great
considerable success in image recognition and natural lan-
guage processing. To better achieve image-sentence match-
ing, most researchers utilize the deep nonlinear mappings to
capture powerful semantic features for images and sentences.
Donahue et al. [34] developed a novel end-to-end recurrent
convolutional architecture for large-scale visual learning, and
demonstrated its effectiveness on retrieval problems. Kiros et
al. [35] described an image-text multi-modal neural language
model and showed jointly learning of the word representations
and image features for image-text retrieval. Ma et al. [36] pro-
vided an end-to-end framework with convolutional architec-
tures to exploit image representations, word compositions, and
matching relations between the two modalities. Eisenschtat et
al. [37] utilized two tied neural network channels to project im-
age and sentence views into a common, maximally correlated
space. In this paper, our embedding functions are designed
with deep networks, where the 16-layers VGG convolutional
network (VGG16) [38] and multi-layer perceptrons (MLP)
[39] are utilized as image and text networks respectively.

B. Top-k Theory

The top-k strategy has received renewed attention with the
advent of large-scale problems [40]. At present, the top-k
strategy is applied to mitigate the category ambiguity prob-
lem in large-scale multi-class classification. To be specific,
the traditional multi-class methods demand that the top-1
predicted category with the largest score is exactly identical
with its ground truth label. This requirement is suitable for
the simple classification only with clearly distinguishable
categories. However, for large-scale multi-class classification,
some classes are highly similar or confusable with one another
[41]. In this case, traditional multi-class methods are too strict

and may suffer from overfitting. To this issue, Lapin et al.
[42] relaxed the penalty for making mistakes by considering
the top-k predictions rather than only the top one. Furthermore,
they [43] also introduced the multi-class smooth top-k hinge
loss and provided an efficient optimization scheme for it. After
that, Chang et al. [44] presented a generic, robust top-k multi-
class method for visual category recognition. Yan et al. [45]
integrated multiple feature fusion into the top-k multi-class
framework to improve the classification performance. In this
paper, we incorporate the top-k strategy into large-scale cross-
modal retrieval to relax the extravagant requirement of the
traditional ranking-based methods.

III. DEEP TOP-k IMAGE-SENTENCE MATCHING

In the framework of the image-sentence matching, we are
provided with two collections of images and sentences, i.e.
X = {x1,x2, · · · ,xn} and T = {t1, t2, · · · , tn} correspond-
ingly. xi ∈ R224×224×3 represents the RGB pixel values of the
i-th image. ti ∈ Rm refers to a m-dimensional feature vector
extracted from the i-th sentence. Notably, the order of images
in X and sentences in T corresponds to each other. In other
words, each image xi ∈ X is associated with the sentence
description ti ∈ T , such that the training dataset consists of n
image-sentence pairs, i.e. D = {(xi, ti) : i = 1, 2, · · · , n}. We
take the image-query-sentence for an example. Given image
query xi, the image-sentence matching task aims to return the
matched sentence ti from the large database T . To perform
this task, we first construct an end-to-end deep multi-modal
network to project images X and sentences T into a shared
embedding space (Section III-A). Then we propose a novel
top-k ranking loss to optimize the parameters of the deep
multi-modal network (Section III-B).

A. Network Architecture

In Figure 2, the deep multi-modal network consists of two
single-modal networks, i.e. the image network and the text
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network. This multi-modal network aims to map the original
images and sentences to a d-dimensional shared embedding
space. Considering the success of deep convolutional network
on image recognition, we adopt VGG16 [38] with a modified
objective function for the image network. In the left part of
Figure 2, VGG16 is composed of thirteen 3× 3 convolutional
layers (conv1− conv13, the purple layers), four max-pooling
layers (the blue layers), and three fully connected layers
(fc14 − fc16, the orange layers). The raw images first pass
the thirteen convolutional layers and four max-pooling layers
to extract the deep features, then through three fully connected
layers to be represented as d-dimensional semantic features.
The text network is illustrated in the right part of Figure 2. The
network is designed as a MLP [46] network with three fully
connected layers (fc1− fc3, the orange layers). The original
sentence features, such as FV [19], pass three fully connected
layers to be encoded as d-dimensional vectors in the shared
embedding space. Considering the good performance of ReLU
activation, we adopt the a(x) = max(0, x) as the activation
function for all convolutional and fully connected layers in our
multi-modal network.

B. Cross-Modal Top-k Ranking

In this section, a novel top-k ranking loss is introduced
to optimize the deep multi-modal network. With the input
of images X and sentences T , the objective function (1)
finetunes the network by jointly minimizing a bi-directional
top-k ranking loss and a regularization term as follows:

min
Wx,Wt

λr(Wx,Wt) +
n∑

i=1

L (Φ(xi;Wx),Ψ(T ;Wt), k)︸ ︷︷ ︸
image−query−sentence

+
n∑

i=1

L (Ψ(ti;Wt),Φ(X ;Wx), k)︸ ︷︷ ︸
sentence−query−image

 .

(1)

The variables Wx and Wt denote the trainable parameter
sets of the image and text networks respectively. r(Wx,Wt)
is the regularization term with a shrinkage coefficient λ. It
denotes the squared sum of parameters in Wx and Wt, i.e.
r(Wx,Wt) = 1

2

∑
w∈{Wx,Wt} w

2. Φ(·;Wx) and Ψ(·;Wt)
indicate the deep non-linear mapping functions for image
and text networks with the parameters Wx and Wt, corre-
spondingly. They encode the single instance xi, ti or batch
instances X , T as new d-dimensional representations in the
shared embedding space. The novel top-k ranking loss terms
L(·) during image-query-sentence and sentence-query-image
processes can be obtained using Equations (2) and (3).

L (Φ(xi;Wx),Ψ(T ;Wt), k) =

max
(

0, S(xi, T \ti)[k] − S(xi, ti) + ∆
)
, (2)

L(Ψ(ti;Wt),Φ(X ;Wx), k) =

max
(

0, S(X \xi , ti)[k] − S(xi, ti) + ∆
)
, (3)

where k and ∆ are two hyper-parameters that can
be obtained by cross-validate. The collections X \xi and

T \ti separately remove the i-th instances in X and T ,
i.e. X \xi = {x1, · · · ,xi−1,xi+1, · · · ,xn} and T \ti =
{t1, · · · , ti−1, ti+1, · · · , tn}. The value of S(xi, tj) denotes
the similarity (relevance score) between image xi and sentence
tj in the shared embedding space, which is obtained by
computing their cosine distance as follows:

S(xi, tj) = Φ(xi;Wx)
>

Ψ(tj ;Wt). (4)

In this case, we define the relevance scores between image xi

and the entire sentences as S(xi, T ), which is represented as:

S(xi, T ) = {S(xi, t1), · · · , S(xi, ti), · · · , S(xi, tn)}. (5)

In the image-query-sentence stage, given image xi, we sort
the matching scores of all sentences T in descending order:

S(xi, T )[1] ≥ S(xi, T )[2] ≥ · · · ≥ S(xi, T )[n], (6)

where the bracket [·] denotes a permutation of querying
results. In other words, S(xi, T )[r] is the r-th largest score in
S(xi, T ). Traditional ranking loss forces the matched image-
sentence pair to rank in front of all other mismatched pairs,
i.e., S(xi, T )[1] = S(xi, ti). Apparently, this assumption is
improper because some sentences in a large database may
be highly similar and confusable to the correctly matched
sentence ti. To mitigate this issue, we relax the traditional
ranking loss and propose a top-k ranking loss for the cross-
modal retrieval. With this strategy, the querying results are
not penalized unless the index of the ground truth sentence is
outside the range of top-k query results. Formally, the top-k
ranking constraint assumes that the query result is correct for
a given image xi if its corresponding sentence ti satisfies the
condition S(xi, ti) ≥ S(xi, T )[k+1], i.e.,

S(xi, ti) ≥ S(xi, T \ti)[k], (7)

where S(xi, T \ti) is obtained by removing the score value
S(xi, ti) in collection S(xi, T ). In that case, the top-k ranking
loss with image query xi can be defined as

L(Φ(xi;Wx),Ψ(T ;Wt), k)

= max(0, S(xi, T )[k+1] − S(xi, ti) + ∆)

= max(0, S(xi, T \ti)[k] − S(xi, ti) + ∆). (8)

Equation (8) guarantees that the score with the matched sen-
tence for image query xi, i.e., S(xi, ti), must be higher than
the score with (k + 1)-th sentence, i.e., S(xi, T )[k+1], by at
least a margin of ∆. When k is set to one, Equation (8) forces
that the first rank result of image query xi must be sentence
ti, which is apparently overstrict due to the data ambiguity
problem. Specifically, the term S(xi, T \ti)[k] in Equation (8),
i.e., returning the k-th largest element in S(xi, T \ti), is non-
convex and non-smooth when k ≥ 2. With the strategy in [47],
we propose a tight upper bound as expressed in the following
equation to approximate it:

S̃(xi, T \ti)[k] =
1

k

k∑
r=1

(S(xi, T \ti)[r]) ≥ S(xi, T \ti)[k].

(9)
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Notably, the sum of k largest components in S̃(xi, T \ti)[k]
is convex according to the research in [48]. Specifically,
S̃(xi, T \ti)[k] = S(xi, T \ti)[k] if and only if all k largest
image-sentence pair scores in S(xi, T \ti) are the same. The
value of

(
S̃(xi, T \ti)[k] − S(xi, T \ti)[k]

)
can be regarded as

a extra slack. It can expand the score margin between the
first k image-sentence pairs and the remaining (n − k) least
similar pairs. This strategy may lead to an improvement over
the initial top-k ranking loss. Therefore, S̃(xi, T \ti)[k] is a
much better approximation for S(xi, T \ti)[k]. In this case, for
image-query-sentence, we propose the following convex top-k
ranking loss to approximate the original non-convex loss (2):

L̃ (Φ(xi;Wx),Ψ(T ;Wt), k) =

max

(
0,

1

k

k∑
r=1

(S(xi, T \ti)[r])− S(xi, ti) + ∆

)
. (10)

We omit the detailed explanation of top-k ranking loss dur-
ing the sentence-query-image procedure, i.e, the meaning of
L(Ψ(ti;Wt),Φ(X ;Wx), k) in Equation (3). Apparently, this
explanation is analogous to illustrating the top-k ranking loss
mentioned in the image-query-sentence stage.

C. Time Complexity Analysis

In this section, we analyze the time complexity of traditional
ranking loss and top-k ranking loss in theory. For large-
scale cross-modal retrieval, the objective function is generally
applied in each mini-batch to optimize the deep network. We
assume b (b = 128 in our experiment) image-sentence pairs for
each mini-batch. These images Xb and sentences Tb first pass
through the multi-modal network to be represented in a shared
embedding space. The time cost during this procedure is only
related to the network architecture and is independent of the
loss function. After that, the ranking loss is measured over
these deep representations to update the network parameters.
Taking image-query-sentence as an example, the traditional
ranking loss is defined in accordance with the work [49]:

L̂ (Φ(xi;Wx),Ψ(Tb;Wt)) =∑
j 6=i

max(0, S(xi, tj)− S(xi, ti) + ∆). (11)

The top-k ranking loss over the mini-batch is computed as:

L̃ (Φ(xi;Wx),Ψ(Tb;Wt), k) =

max

(
0,

1

k

k∑
r=1

(S(xi, T \tib )[r])− S(xi, ti) + ∆

)
. (12)

By comparing Equation (12) and (11), given image query xi,
the top-k ranking loss and traditional ranking loss all consume
the same time to obtain b matching scores for all sentences,
i.e., S(xi, Tb). After that, the traditional ranking loss stipulates
that the score for matched image-sentence pair S(xi, ti) must
be higher than all other mismatched scores S(xi, T \tib ) by
a margin of ∆. This procedure requires O(b) time cost to
compute the loss value for the given image query xi. For
top-k ranking loss, we compute the average of the largest k
matching scores, and then obtain the loss value for one image

query. According to the work [50], the time cost for top-k
ranking is O(b + klogk) if we use the quick top-k sorting
algorithm. Note that O(b + klogk) is approximately equal to
O(b) because the k in our top-k ranking loss is generally
small for image-sentence retrieval. Therefore, the top-k and
traditional ranking losses consume the nearly equivalent time
cost for the image-sentence matching task.

IV. EXPERIMENT

In this section, we conduct extensive experiments on three
benchmark datasets to validate the effectiveness of our deep
top-k ranking loss for image-sentence matching. Three bench-
mark datasets, eleven competitors, and implementation details
are introduced in Section IV-A. Some image-sentence match-
ing examples and performance comparisons are discussed in
Section IV-B. We analyze the impacts of the top-k strategy and
the embedding dimension of multi-modal space on retrieval
performance in Sections IV-C and IV-D.

A. Experimental Setup

1) Datasets: We perform the experiments on three bench-
mark datasets, namely, Flickr8k, Flickr30k, and MSCOCO.
• Flickr8k [16]: The dataset consists of 8,000 images

from Flickr.com website. The dataset focuses on some
activities of people and animals. Each image is annotated
with five sentences using Amazon Mechanical Turk.
These sentences generally describe the objects, scenes,
and activities for the corresponding images.

• Flickr30k [51]: The dataset is an extension of Flickr8k
with 31,783 images. Each image also has five correspond-
ing sentences to describe its content, where the sentences
are obtained in a style similar to Flickr8k.

• MSCOCO [52]: The dataset contains 123,287 images,
and each image corresponds to five descriptive sentences.
The dataset includes 91 object categories and 82 of them
have more than 5,000 images.

Some examples of images and the corresponding sentences in
Flickr8k, Flickr30k, and MSCOCO are demonstrated in Figure
3. For each dataset, we utilize 1,000 images for validation,
1,000 images for testing, and the remainder for training.

2) Competitors: We compare our method with eleven
state-of-the-art baselines. The CCA (Mean-Vector), CCA (FV
HGLMM), CCA (FV GMM+HGLMM), and DCCA are four
representative CCA-based methods. The mCNN, DSPE, Two-
branch Nets (Embedding), Dual-Attention Nets, and sm-
LSTM are five ranking-based methods. The m-RNN and Two-
way Nets are two other DL-based methods. The detailed
introduction of these competitors is presented as follows:
• CCA (Mean-vector) [19]: A primary CCA-based method

for the image-sentence matching task. For the method,
each sentence is mapped to a set of word2vec vectors
and then the average vector of this set is utilized for the
sentence representation.

• CCA (FV) [19]: A CCA-based method that extracts the
sentence FV features as the input of the model. Specifi-
cally, the method “CCA (FV HGLMM)” adopts HGLMM



1520-9210 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2019.2931352, IEEE
Transactions on Multimedia

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 3: Some examples of image-sentence pairs from three datasets.

pooling strategy to generate better fisher vectors. And the
“CCA (FV GMM+HGLMM)” method utilizes the fusion
of GMM with HGLMM pooling strategies.

• DCCA [20]: An alternative end-to-end learning scheme
based on the deep CCA to achieve cross-modal retrieval,
where the image part of the deep network is initialized
using a pre-trained AlexNet model [54]. This method em-
ploys simple term frequency inverse document frequency
(TF-IDF) features to represent text descriptions.

• mCNN [36]: A novel bi-directional ranking-based
method for cross-modal retrieval, which includes the
matching CNN and MLP two parts. A matching CNN
takes images and words as the input and produces the
joint multi-modal representations. Then MLP summarizes
the joint representation and outputs the matching score.

• DSPE [30]: A state-of-the-art ranking-based method for
the image-sentence matching task. This method considers
not only the cross-view ranking constraints, but also
the within-view neighborhood structure preservation con-
straints inspired by metric learning literature.

• Two-branch Nets [31]: Embedding or similarity network
for the image-text matching task. The Two-branch Nets
with optimal results is an embedding network that is
the extension of competitor DSPE [30] by utilizing a
neighborhood sampling strategy.

• Dual-Attention Nets [32]: A ranking-based method that
jointly leverages visual and textual attention mechanisms,
where we only show results with VGG image features
because we also use this type of features in our model.

• sm-LSTM [33]: An bi-directional ranking-based method
for cross-modal retrieval, which recurrently selects salient
pairs of image-sentence instances, and then measures
their local similarities within several time steps.

• m-RNN [53]: A multi-modal deep network for generating
novel image captions. It consists of two sub-networks: a
RNN network for sentences and a CNN network for im-
ages. For the image part, we respectively utilize AlexNet
for Flickr8k, and VggNet for Flickr30k and MSCOCO
datasets. We denote them as m-RNN-AlexNet and m-
RNN-VggNet in the experiment.

• Two-way Nets [37]: A novel neural network for matching
vectors from two data sources. This method uses two tied

neural network channels to project the two views into a
common, maximally correlated space.

3) Implementation: We implement our model based on
the open-source PyTorch framework. To augment the number
of images, we crop 224 × 224 regions from the original
256 × 256 images in ten different ways, including the four
corners, the center, and their x-axis mirror images. We extract
the sentence FV features as the input of the MLP text network.
Specifically, we first represent each sentence word as a 300-
dimensional word2vec semantic feature, and then construct
a codebook with 30 centers through independent component
analysis (ICA) on the word2vec features. The FV features for
sentences with 300×30×2 = 18000 dimensions are obtained
based on HGLMM pooling strategy [19]. Finally, we conduct
principal components analysis (PCA) [55], [56] to reduce the
sentence dimension from 18,000 to 6,000. In this case, each
sentence is denoted as a 6,000-dimensional vector.

For the image network, the parameters of convolutional
layers (conv1 − conv13) in VGG16 are pre-trained on Im-
ageNet to avoid overfitting. The numbers of neurons for fully
connected layers (fc14 − fc16) are set to 4,096, 1,024, and
512, respectively. The output dimensions of layers (fc1−fc3)
in the text network are set to 1,024, 512, and 512, correspond-
ingly. Note that we add the dropout layers with probability 0.3
and apply batch normalization for the fully connected layers
to improve the network stability. In the training stage, each
mini-batch contains 128 image-sentence pairs. We utilize the
SGD algorithm with momentum 0.9 and weight decay 0.001
to optimize our multi-modal network. The learning rate is
initialized as 0.1 and then decreased by 5% after each epoch.

B. Performance Comparison

In Figures 4 and 5, we show some query results of image re-
trieval and sentence retrieval on Flickr30k dataset, respectively.
We only list the top-5 predicted results, where the correct
predictions appear in red font or red box. The R@K(K=1,5,10)
results over three datasets are resulted in Tables I, II, and
III, where the retrieval results for all competitors are directly
obtained from the corresponding published papers. To illus-
trate the effectiveness of top-k ranking loss adequately, we
assign the value of hyper-parameter k in the interval {4, 5, 6}.
According to these results, we have the following observations:
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Fig. 4: Some testing results of image-query-sentence on Flickr30k dataset. We show top-5 sentences for each image query,
and the retrieved correct sentences are shown in red font.

Fig. 5: Some testing results of sentence-query-image on Flickr30k dataset. We show top-5 images for each sentence query,
and the retrieved correct images are marked with red borders.

• Compared with the four CCA-based methods, mCNN,
and m-RNN, our method achieves the optimal retrieval
results over three benchmark datasets. Specifically, the
R@1 for image-query-sentence improves by 2.3% on
Flickr8k, 7.0% on Flickr30k, and 8.3% on MSCOCO;
the R@1 for sentence-query-image improves by 1.8% on
Flickr8k, 6.3% on Flickr30k, and 10.0% on MSCOCO.

• Our method achieves comparable performance to five
state-of-the-art methods, including DSPE, Two-branch
Nets (Embedding), Two-way Nets, Dual-Attention Nets
(VGG), and sm-LSTM. Specifically, our method obtains
better results on R@5 but poorer on R@1 than Two-
way Nets. This result is consistent with the conclusion in
[31]. Apparently, the top-k ranking is very promising if it
considers the structure information within modalities like
methods DSPE and Two-branch Nets, or if it is applied on
better image-sentence features and network architectures
like methods Dual-Attention Nets and sm-LSTM.

• The majority of approaches perform optimally on dataset
MSCOCO, then Flickr30k, and lastly Flickr8k. For our

method with top-4 ranking loss, the R@1 values over
datasets Flickr8k, Flickr30k, and MSCOCO are 33.3%,
42.4%, and 51.1% respectively in the image-query-
sentence stage. This is reasonable because more training
data in MSCOCO is conductive to improving the model’s
generalization ability.

C. Impact of the top-k strategy

The top-k ranking loss is an improvement on traditional
ranking loss, which can be extensively applied to any ranking-
based retrieval methods. To confirm its effectiveness further,
we conduct an experiment to compare the retrieval perfor-
mance of traditional and top-k ranking losses in the same
experimental setting. Considering the simplified version of
ranking-based methods DSPE, Two-branch Nets, and Dual-
Attention Nets have been accomplished and opened by some
researchers, we thus directly revise these codes to replace
the original cross-modal ranking loss as the top-k loss to
verify whether the top-k strategy can improve the retrieval
performance. Notably, numerous versions of Two-branch Nets
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TABLE I: The ranking performance comparison in terms of R@K over Flickr8k.

Methods Image-query-Sentence Sentence-query-Image
R@1 R@5 R@10 R@1 R@5 R@10

CCA(FV Mean-vector) [19] 22.6 48.8 61.2 19.1 45.3 60.4
CCA (FV HGLMM) [19] 28.5 58.4 71.7 20.6 49.4 64.0

CCA (FV GMM+HGLMM) [19] 31.0 59.3 73.7 21.3 50.0 64.8
DCCA [20] 28.2 56.1 69.8 26.3 54.0 67.5
mCNN [36] 24.8 53.7 67.1 20.3 47.6 61.7

m-RNN-AlexNet [53] 14.5 37.2 48.5 11.5 31.0 42.4
Two-way Nets [37] 43.4 63.2 - 29.3 49.7 -

TOP-k Ranking (k=4) 33.3 61.8 74.6 28.1 55.9 68.1
TOP-k Ranking (k=5) 32.7 62.7 75.3 27.3 57.8 69.3
TOP-k Ranking (k=6) 32.1 63.2 75.5 24.1 54.7 68.7

TABLE II: The ranking performance comparison in terms of R@K over Flickr30k.

Methods Image-query-Sentence Sentence-query-Image
R@1 R@5 R@10 R@1 R@5 R@10

CCA(FV Mean-vector) [19] 24.8 52.5 64.3 20.5 46.3 59.3
CCA (FV HGLMM) [19] 34.4 61.0 72.3 24.4 52.1 65.6

CCA (FV GMM+HGLMM) [19] 35.0 62.0 73.8 25.0 52.7 66.0
DCCA [20] 27.9 56.9 68.2 26.8 52.9 66.9
mCNN [36] 33.6 64.1 74.9 26.2 56.3 69.6

m-RNN-VggNet [53] 35.4 63.8 73.7 22.8 50.7 63.1
DSPE [30] 40.3 68.9 79.9 29.7 60.1 72.1

Two-branch Nets (Embedding) [31] 43.2 71.6 79.8 31.7 61.3 72.4
Two-way Nets [37] 49.5 67.5 - 36.0 55.6 -

Dual-Attention Nets (VGG) [32] 41.4 73.5 82.5 31.8 61.7 72.5
sm-LSTM [33] 42.4 67.5 79.9 28.2 57.0 68.4

TOP-k Ranking (k=4) 42.4 69.0 77.4 30.2 58.3 70.1
TOP-k Ranking (k=5) 41.3 70.3 79.8 33.1 61.5 72.9
TOP-k Ranking (k=6) 37.8 68.3 82.6 31.2 63.1 75.2

TABLE III: The ranking performance comparison in terms of R@K over MSCOCO.

Methods Image-query-Sentence Sentence-query-Image
R@1 R@5 R@10 R@1 R@5 R@10

CCA(FV Mean-vector) [19] 33.2 61.8 75.1 24.2 56.4 72.4
CCA (FV HGLMM) [19] 37.7 66.6 79.1 24.9 58.8 76.5

CCA (FV GMM+HGLMM) [19] 39.4 67.9 80.9 25.1 59.8 76.6
mCNN [36] 42.8 73.1 84.1 32.6 68.6 82.8

m-RNN-VggNet [53] 41.0 73.0 83.5 29.0 42.2 77.0
DSPE [30] 50.1 79.7 89.2 39.6 75.2 86.9

Two-branch Nets (Embedding) [31] 54.0 84.0 91.2 43.3 76.8 87.6
Two-way Nets [37] 55.8 75.2 - 39.7 63.3 -

sm-LSTM [33] 52.4 81.7 90.8 38.6 73.4 84.6
TOP-k Ranking (k=4) 51.1 82.1 85.7 42.6 71.2 84.7
TOP-k Ranking (k=5) 47.8 80.7 87.9 38.1 77.8 87.1
TOP-k Ranking (k=6) 44.3 77.2 89.0 31.8 72.3 88.4

exist in [31], where previous competitor DSPE is the one by
considering the neighborhood structure within modalities. To
be different from the setting of DSPE, we select the version
of Two-branch Nets that do not contain the within-view
structure-preserving constraints. Table IV presents the retrieval
performance with traditional and top-k (k = 5) ranking losses
on dataset Flickr30k. The R@K (K=1,5,10) performances of
methods DSPE, Two-branch Nets (Embedding), and Dual-
Attention Nets with traditional ranking loss are slightly lower
than the published results in original papers. It is because the
procedure of data processing is not public, and the opened
codes are partly consistent with the details in these papers.
This situation does not affect the fair comparison of traditional
ranking loss and our top-k ranking loss because these methods
continue to be in the same experimental setting. The results in-
dicate that our top-5 ranking loss consistently performs better
than traditional ranking loss in any experimental settings, thus
the top-k strategy effectively improves retrieval performance

by mitigating the data ambiguity problem.

In addition, we conduct an experiment to evaluate how the
selection of k in the top-k ranking loss impact on retrieval
performance on three datasets. In Figure 6, we plot the
R@K (K=1,5,10) performance curves as the increase of k
in the image-query-sentence and sentence-query-image stages.
The results indicate that the retrieval performance on R@K
(K=1,5,10) improves with the increase of k; after reaching
its maximum, the performance decreases gradually. For R@1
evaluation criteria, the optimal retrieval results are obtained
constantly when k equals 3 or 4 over three datasets. In most
cases, the R@5 metric gets the maximum while k = 5. When
k = 5 or 6, the performance value of R@10 obtains the
peak. The above mentioned results are reasonable to some
extent. The larger value of hyper-parameter k brings the looser
restriction, which is more beneficial for the R@K metric with
larger K. In summary, a proper k, such as k = 4, 5, or 6, can
achieve the desired performance for cross-modal retrieval with
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TABLE IV: The retrieval performance with traditional ranking loss and top-k ranking loss in the same experimental setting.

Ranking-based Methods Image-query-Sentence Sentence-query-Image
R@1 R@5 R@10 R@1 R@5 R@10

DSPE [30] Traditional ranking loss 39.6 68.2 78.1 28.3 58.2 71.4
Top-5 ranking loss 41.8 70.9 81.6 32.1 62.3 74.2

Two-branch Nets (Embedding) [31] Traditional ranking loss 38.2 67.6 78.8 28.1 57.9 70.8
Top-5 ranking loss 41.2 70.2 80.9 32.5 61.7 73.4

Dual-Attention Nets (VGG) [32] Traditional ranking loss 40.3 72.1 80.1 30.0 59.8 70.9
Top-5 ranking loss 42.1 73.4 81.3 31.7 62.4 73.8

Our Setting Traditional ranking loss 39.2 68.1 76.8 30.9 58.4 69.4
Top-5 ranking loss 41.3 70.3 79.8 33.1 61.5 72.9
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Fig. 6: R@K curves with increasing of hyper-parameter k over three datasets.

indistinguishable data.

D. Impact of Embedding Dimension

The embedding dimension of the multi-modal space impacts
the image-sentence matching results. In this section, with the
condition of k = 5 in the top-k ranking loss function, we study
the influence of the embedding dimension by assigning it to
be tuned from 200 to 800 with a step-size of 50. In Figure 7,
we plot the R@5 performance curves as the increase of em-
bedding dimension on three datasets. It indicates that retrieval
results improve with the increase of embedding dimension at
first. After reaching the maximum, the performance decreases
gradually. Note that the R@5 value fluctuates extensively when
the embedding dimension is too small. The results demon-
strate that a proper value of the embedding dimension can
achieve the optimal retrieval results by capturing the common
semantics of images and sentences. The optimal embedding
dimension distinguishes over different datasets because of the
diverse properties related to the datasets. When the embedding
dimension is in the interval [450, 550], the retrieval results can
be satisfactory and relatively stable.

V. CONCLUSION

In this paper, we propose an end-to-end deep multi-modal
network with a novel top-k ranking loss for large-scale image-
sentence matching. This network learns the shared embedding
space by combining the CNN and MLP networks. We propose
a relatively slack top-k ranking loss to relieve the data ambi-
guity problem in massive query databases. An effective convex
upper bound function is exploited to approximate the initial
top-k loss in the framework of a multi-modal deep network.
The experimental results over three benchmark datasets, i.e.,

Flickr8k, Flickr30k, and MSCOCO, indicate that our method
generally obtains the comparable performance with state-of-
the-art methods in terms of the R@K metric. In future work,
it is potential to replace the MLP text network as a LSTM
network for extracting the text representations automatically.
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