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a b s t r a c t 

Network embedding aims to encode nodes into a low-dimensional space with the structure and inherent properties 

of the networks preserved. It is an upstream technique for network analyses such as link prediction and node clus- 

tering. Most existing efforts are devoted to homogeneous or heterogeneous plain networks. However, networks in 

real-world scenarios are usually heterogeneous and not plain, i.e ., they contain multi-type nodes/links and diverse 

node attributes. We refer such kind of networks with both heterogeneities and attributes as attributed hetero- 

geneous networks (AHNs). Embedding AHNs faces two challenges: (1) how to fuse heterogeneous information 

sources including network structures, semantic information and node attributes; (2) how to capture uncertainty 

of node embeddings caused by diverse attributes. To tackle these challenges, we propose a unified embedding 

model which represents each node in an AHN with a G aussian distribution (AHNG). AHNG fuses multi-type 

nodes/links and diverse attributes through a two-layer neural network and captures the uncertainty by embed- 

ding nodes as Gaussian distributions. Furthermore, the incorporation of node attributes makes AHNG inductive, 

embedding previously unseen nodes or isolated nodes without additional training. Extensive experiments on a 

large real-world dataset validate the effectiveness and efficiency of the proposed model. 
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. Introduction 

Network embedding is mainly designed to encode the graph data
nto a low-dimensional latent space [1] . As an upstream technique, net-
ork embedding benefits a lot of network analysis tasks, such as link
rediction [2,3] and node clustering [4] , as well as attracts considerable
ttention in various fields, ranging from linguistics [5,6] , social sciences
7,8] to biological networks [9] . 

Most of the network embedding methods [10–13] rely on a basic as-
umption that the networks are homogeneous [14] , that is, the networks
ontain the same type of nodes and links. However, this assumption is
ntenable as many real-world networks contain multi-type nodes and
inks, holding rich structure and manifold semantics information, show-
ng heterogeneity. For example, a network in terms of film may contain
everal types of nodes like director, movie, actor , and producer , as well as
ifferent relationships among nodes, such as direct, play , and produce . In
ddition, nodes in heterogeneous networks are usually affiliated with di-
erse attributes ( e.g ., director’s profile information and movie’s abstract)
hich play an important role in the formation of network structure

15] . In this paper, we refer such kind of heterogeneous networks
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ffiliated with diverse attributes as a ttributed h eterogeneous n etworks

AHN). Our goal is to design an effective model to represent AHNs in
 low-dimensional space with the structure and inherent properties
reserved. 

.1. Motivating example and challenges 

Fig. 1 is a toy attributed heterogeneous bibliographic network which
ontains multi-typed nodes including author (a), paper (p) and venue (v),
nd diverse links including write ( r 1 ), accept ( r 2 ) and cite ( r 3 ). Different
ypes of nodes have different attributes. As shown in Fig. 1 , f 1 , f 2 indi-
ate attributes of authors which are depicted in blue, attributes of papers
re indicated by f 3 , f 4 which are depicted in green, attributes of venues
re indicated by f 5 , f 6 which are depicted in orange. Accompanying with
uch abundant heterogeneous information, two challenges in AHN em-
edding have to be addressed: 

ow to fuse heterogeneous information. Three elements are needed to
onsider in AHN embedding: (1) multi-type nodes, (2) multi-type links,
nd (3) diverse attributes of nodes, involving semantic types, topology
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Fig. 1. An illustrative example of attributed heterogeneous networks. As shown in the figure, the toy attributed bibliographic network contains (1) multi-type nodes, 

(2) multi-type links, and each node is affiliated with (3) diverse attributes depicted in different colors. The attribute vector for each node is a concatenation of 

different types of attributes. 
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nformation and unstructured text. A vast majority of homogeneous net-
ork embedding methods [10,11,16,17] ignore all of the above three

lements. Some methods, such as G2G [18] and LANE [19] , take at-
ributes into account but convert a heterogeneous network to a homoge-
eous one by a projection on a single node type. Such projection will lose
aluable information. Few heterogeneous network embedding methods
ame out until the concept of meta-path [20] is presented. Meta-paths
re able to effectively capture semantic information of heterogeneous
etworks. For example, in Fig. 1 , there are two kinds of meta-path be-
ween a 2 and a 4 , indicating different semantic information: one meta-

ath “ ” indicates a collaborative relationship between a 2 

nd a 4 ; another meta-path “ ” indicates a 2 and

 4 may have common research interests, and the superscript −1 de-
otes the reverse of relation direction. Most meta-path based methods
21,22] simultaneously fuse multi-type nodes and links but ignore node
ttributes. Recent models regard node attributes as new kinds of nodes
ut greatly increase the complexity of heterogeneous network topology
uch as BL-MNE [23] . Therefore, it is arduous to seamlessly fuse multi-
ype nodes/links and diverse attributes in a unified AHN embedding
odel. 

ow to capture the uncertainty of node embeddings. Most existing net-
ork embedding methods represent each node as a vector, i.e ., depict a
ode as a single point in the latent space, leading to a certain represen-
ation of a node. However, the complex and diverse attributes of nodes
ctually make node representations uncertain. For example, in Fig. 1 ,
 2 publishes p 1 and p 2 in v 1 and v 2 respectively. When the attributes of
hese nodes are different or even opposite, e.g ., v 1 and v 2 belong to two
ifferent research areas respectively or p 1 and p 2 have diverse attributes,
hey will cause variant effects while introducing the representation of
 2 . Recent years, some methods [18,24] embed nodes in homogeneous
etworks with distributions, but none of them is applicable for AHNs.
ntuitively, an AHN embedding model should learn the representation
f a node based on its neighbors, related links, and node attributes. En-
oding these various information magnify the uncertainty of nodes. 

.2. Solutions and contributions 

To effectively cope with the aforementioned challenges, we propose
 novel model to represent each node in an a ttributed h eterogeneous
 etwork with a G aussian distribution in a latent space, called AHNG.
HNG encodes diverse attributes with a two-layer neural network and
reserves the structure and semantic information of AHN based on
eta-path based random walks [21] , which can seamlessly fuse multi-
odes/links and node attributes. AHNG represents each node as a Gaus-
222 
ian distribution, which is capable of capturing the uncertainty of a node
epresentation. The main contributions of our work are summarized as
ollows: 

• We propose a novel model AHNG, which is able to fuse network
structure, semantic information and node attributes of AHNs in a
unified embedding model. AHNG shows inductiveness, i.e ., it can be
generalized to previously unseen nodes or isolated nodes without
additional training. 

• We represent each node with a multi-dimensional Gaussian distribu-
tion to capture the uncertainty of node representations and exper-
imentally prove that AHNG achieves a better performance by uti-
lizing KL-divergence, an asymmetric measurement, to measure the
dissimilarity among nodes. 

• We conduct extensive experiments on a large real-world attributed
heterogeneous networks to investigate the effectiveness and effi-
ciency of the proposed AHNG. 

The rest of this paper is organized as follows. Section 2 discusses
elated work. Section 3 formulates the problem, and proposes a frame-
ork of AHNG in details. Experimental results are discussed in Section 4 .
onclusions and future work are presented in Section 5 . 

. Related work 

In this work, we review the embedding methods in (1) homogeneous
etworks and (2) heterogeneous networks. 

.1. Homogeneous network embedding 

A vast majority of existing methods focus on embedding nodes in
omogeneous networks in previous years. The pioneer studies in graph
mbedding always preserve the graph property with a matrix and fac-
orize the matrix to reduce the dimension of network data. For exam-
le, LLE [25] represents the connections between nodes with an adja-
ency matrix and computes low-dimensional, neighborhood-preserving
mbeddings of high-dimensional inputs. Laplacian Eigenmaps [26] is
 geometrically motivated algorithm for the construction of the repre-
entation for nodes. Recently, some matrix factorization based meth-
ds incorporate text features to learn embeddings such as TADW [27] .
owever, matrix factorization based methods suffer from both compu-

ational and statistical performance drawbacks. 
With the advent of deep learning techniques and the invention

f word2vec [28] , researchers extend embedding methods in natural
anguage processing from sequences of words to graphs. DeepWalk
10] and Node2vec [11] preserve higher-order proximity between nodes
ased on skip-gram model. LINE [29] preserves both first order and sec-
nd proximities between a node and its contexts. SDNE [30] employs



M. Liu, J. Liu and Y. Chen et al. Information Fusion 50 (2019) 221–230 

d  

w  

c  

o  

c  

a  

r
 

c  

w

2

 

a  

e  

v  

b
 

i  

w  

i  

g  

h  

w  

c  

r  

p  

s  

w  

i
 

n  

h  

t  

w  

t  

t  

i
 

e  

a  

d  

w  

t  

v  

c  

f  

o  

t  

w  

r

3

3

 

a  

t  

(

D  

g  

l  

o

  

𝐅  

n

 

𝑝  

a  

t  

t  

n  

b  

S  

v  

f  

v

D  

𝑅  

o  

s

 

a  

n

d  

p
 

w

P  

{  

c  

𝑧

F  

s  

t  

i  

t  

a  

m  

g  

s  

t  

3

 

n  

s  

n  

u  

t  

c

w
r  

t  

t

eep auto-encoders to capture the highly non-linear network structure,
hich preserve the global and local structure. VAGE [31] applies a graph

onvolutional network encoder and an inner product decoder to the task
f graph embedding. G2G [18] considers node attributes and utilizes en-
oders to learn embeddings. Deep learning based methods learn more
nd deeper semantic information of the network compared to shallow
epresentation methods. 

Previous network embedding methods in homogeneous networks
annot be directly applied to heterogeneous networks which are linked
ith real-world scenarios more naturally. 

.2. Heterogeneous networks embedding 

Network embedding in heterogeneous networks emerged a few years
go and quickly became a flourishing research field. Existing network
mbedding techniques in heterogeneous networks can be broadly di-
ided into three types: (1) random walk based (2) network factorization
ased (3) deep neural network based. 

Due to the multi-type of nodes and links in heterogeneous networks,
t is difficult for random walkers to find a walk mode to traverse the
hole networks. Meta-paths limit the liberty of random walkers, reduc-

ng the traversal complexity in AHNs. For example, inspired by skip-
ram model on homogeneous networks, metapath2vec [21] proposes a
eterogeneous skip-gram model and utilizes meta-path based random
alks to traverses the whole network. HIN2Vec [22] also utilizes spe-

ific meta-paths and proposes a neural network model to capture the
ich semantics embedded in heterogeneous networks. However, meta-
ath based random walk models can not completely preserve the whole
tructure of a network when the number of walks wk for each node and
alk lengths len are too small. In other words, unreachable nodes and

solated nodes can not be represented at all. 
Network factorization based techniques divide a big heterogeneous

etwork into several small bipartite graphs to ease the complexity of
eterogeneous network. For example, PTE [32] divides a heterogeneous
ext network into word-word network, word-document network and
ord-label network, and then utilizes both labeled and unlabeled data

o learn the embedding of text. However, network factorization based
echniques have no unified standard when dividing different networks
nto several small ones. 

Deep neural network based models provide a robust and effective
mbedding way based on deep learning techniques, which reflect more
nd deeper semantic information of the network. Recent years, some
eep neural networks based methods embed heterogeneous networks
ith auxiliary informations. For example, HNE [1] learns representa-

ion for texts and images through a deep neural network and a con-
olutional neural network respectively, and then unifies them into a
ommon space using linear transformation but neglects the semantic in-
ormation among nodes. BL-MNE [23] regards attributes as new kinds
f nodes and utilizes auto-encoders to encode each node, but increases
he complexity of network topology. Meanwhile, few deep neural net-
ork based models in heterogeneous networks take uncertainty of node

epresentations into account. 

. The proposed AHNG 

.1. Problem formulation and framework 

Following the standard notation, we use the normal lowercase char-
cters ( e.g ., u) to denote scalars and bold lowercase characters ( e.g ., f )
o indicate vectors. Matrices are written as bold uppercase characters
 e.g ., F ) and uppercase italic characters ( e.g ., V ) for sets. 

efinition 1. An attributed heterogeneous network is a directed
raph 𝐺 = ( 𝑉 , 𝐸, 𝐅 ) with a node mapping function 𝜙 ∶ 𝑉 →  , and a
ink mapping function 𝜑 ∶ 𝐸 →  , where each node u ∈V belongs to
ne type 𝐴 ∈  and each link e ∈E ⊆V ×V belongs to one type 𝑟 ∈
𝑎 

223 
 , and | | + | | > 2 . Moreover, F i , a row vector of attribute matrix
 = [ 𝐅 1 , 𝐅 2 , … , 𝐅 𝑖 , …𝐅 |𝑉 |] ⊤, denotes the attribute information of the i -th
ode u i ∈V , concatenating all types of node attributes in  . 

For example, in Fig. 2 , 𝐺 = ( 𝑉 , 𝐸, 𝐅 ) , where 𝑉 = { 𝑎 1 , 𝑎 2 , 𝑎 3 , 𝑎 4 ,
 1 , 𝑝 2 , 𝑝 3 , 𝑝 4 , 𝑣 1 , 𝑣 2 } , 𝐸 = { 𝑎 1 𝑝 1 , 𝑝 1 𝑣 1 , …} , 𝜙: V → { A, P, V }, 𝜑 : E → { write,

ccept }, and 𝐅 = { 𝐅 1 , … , 𝐅 10 } . As for node attributes, { f 1 , f 2 } denote au-

hor attributes: affiliations and research interest ; { f 3 , f 4 } denote paper at-
ributes: paper title and abstract ; { f 5 , f 6 } denote venue attributes: venue

ame and venue introduction . More specifically, every node is represented
y an attribute vector F i which contain six kinds of attributes ( 𝑓 1 , … , 𝑓 6 ).
uppose that we use an attribute vector F 1 to represent an author u 1 , the
alues of attributes f 1 , f 2 are given by the author u 1 while the attributes
 3 , f 4 , f 5 , f 6 are set as zeros because they are used to describe paper and
enue . besides, the dimension of each attribute f i is defined by users. 

efinition 2. A meta-path [33] defines a composite relation 𝑅 =
 1 ◦𝑅 2 ◦… ◦𝑅 𝑙 between type A 1 and 𝐴 𝑙+1 , which is denoted in the form

f , and l ( l ≥ 1) is the length of  . Each sub-

cript (e.g. 1 , 2 , … , 𝑙) represents the position of a type or a link in  . 

Meta-paths extract semantic information effectively. For example,

s shown in Fig. 2 , meta-path de-

otes two authors are interested in the same research, 

enotes collaboration relationship, and denotes two

apers are written by a same author. 
The problem of network embedding on attributed heterogeneous net-

orks can be formally defined as follows: 

roblem formulation. Given an attributed heterogeneous network 𝐺 =
 𝑉 , 𝐸, 𝐅 } , where |𝑉 | = 𝑛 and 𝐅 ∈ ℝ 

𝑛 ×𝑑 , the embedding of G aims to en-
ode each node u i ∈V with a lower-dimensional Gaussian distribution
 𝑖 =  ( 𝝁𝑖 , 𝚺𝑖 ) , where 𝝁𝑖 ∈ ℝ 

𝑙 , 𝚺𝑖 ∈ ℝ 

𝑙×𝑙 with l ≪ n, d . 

ramework. AHNG aims to encode nodes into a latent low-dimensional
pace by leveraging three types of information: multi-type nodes, multi-
ype links, and node attributes. The framework of the proposed AHNG
s shown in Fig. 2 , which consists of three essential components: (I) at-

ribute encoder : an attribute encoder is designed to encode diverse node
ttributes and output mean 𝝁 and covariance 𝚺 for each node u i in V ; (II)
eta-path based random walker : a random walker traverses the hetero-
eneous network based on preassigned meta-paths M p to preserve the
emantic and structure information of the AHN; (III) learner : to update
he parameters of the attribute encoder and learn the node embedding.

.2. Attribute encoder 

A two-layer neural network � , called attribute encoder , processes the
ode’s attributes, outputs mean and covariance for each node. More
pecifically, as shown in Fig. 2 , f i represents the attribute vector for each
ode u i , and the first layer outputs an intermediate representation y i for
 i . The layer 𝜇 and layer Σ output mean 𝝁i and covariance 𝚺i respec-
ively for node u i . Formally, the relationship between these variables
an be represented by the following equations: 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑦 𝑖 = 𝜎1 ( 𝐖 1 𝐟 ⊤𝑖 + 𝐛 1 ) 
𝝁𝑖 = 𝐖 𝜇 𝑦 𝑖 + 𝐛 2 
𝚺𝑖 = 𝜎2 ( 𝐖 

Σ
𝑦 𝑖 + 𝐛 3 ) 

, (1) 

here 𝜎1 and 𝜎2 represent relu and elu active functions, and 𝐖 1 , 𝐖 𝜇, 𝐖 Σ
epresent the weight matrix of layer 1, 𝜇 and Σ respectively. The well-
uned parameters of the attribute encoder enable AHNG to be an induc-
ive learning model. 
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Fig. 2. The framework of the proposed AHNG. 
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.3. Meta-path based random walker 

We preserve structure and semantic information of AHN by demon-
trating it as a set of random walk paths. Different from random walk-
ased models in homogeneous network, in which a random walker tra-
erses the whole network without constraint, a meta-path based ran-
om walker [21] traverse an AHN based on preassigned meta-paths. For

nstance, given a meta-path ,

nd 𝑢 𝑡 
𝑖 

denotes node u i belonging to type t . The random walker goes
o node 𝑢 𝑡 

𝑖 
at step j , and at step 𝑗 + 1 the node 𝑢 𝑖 +1 should satisfied with

 𝑢 𝑡 
𝑖 
, 𝑢 𝑖 +1 ) ∈ 𝐸 and 𝜙( 𝑢 𝑖 +1 ) = 𝑡 + 1 . As for those nodes who conform to con-

itions above, one of them is picked out randomly. 
In order to cover every node in the network, meta-path based ran-

om walk models should assure both of the number of walks and walk
engths to be sufficient. For instance, metapath2vec achieves better per-
ormance when the number of walks ( wk ) and walk lengths ( len ) are
arger than 800 and 100 respectively. However, due to the incorpora-
ion of attributes, we experimentally show that even when the two pa-
ameters are very slim such as 𝑤𝑘 = 5 and 𝑙𝑒𝑛 = 2 , AHNG still performs
ell. 

.4. Learner 

Skip-gram [28] models maximize the probability of observing a
eighborhood node (context) based on a center node embedding. These
odels based on the conditional independence assumption: given a

earned embedding, observing neighboring nodes become independent
10,11,29] . We follow the clue and formulate AHNG with considering
he heterogeneity of networks and attributes of nodes: 

arg max 
ℏ 

∑
𝑢 𝑖 ∈𝑉 

∑
𝑡 ∈ 

log 𝑃 𝑟 
(
𝑁 𝑡 ( 𝑢 𝑖 ) |ℏ ( 𝑢 𝑖 ) ), (2)

 t ( u i ) ⊆V collects the t -type ( 𝑡 ∈  ) neighborhoods which appears
ithin the window-size w of the center node u i , i.e ., 𝑁 𝑡 ( 𝑢 𝑖 ) =
 𝑢 𝑗 |𝑑( 𝑢 𝑖 , 𝑢 𝑗 ) ≤ 𝑤 } , 𝑢 𝑡 

𝑗 
denotes node u j belonging to type t , and d ( u i , u j )

enotes the shortest distance between u i and u j . 
224 
Based on the conditional independence assumption, we approximate
he conditional probability in Eq. (2) as follows: 

𝑃 𝑟 

(
𝑁 𝑡 ( 𝑢 𝑖 ) |ℏ ( 𝑢 𝑖 ) ) = 

∏
𝑢 𝑗 ∈𝑁 𝑡 ( 𝑢 𝑖 ) 

𝑃 𝑟 ( 𝑢 𝑗 |ℏ ( 𝑢 𝑖 )) . (3) 

One approach for parameterizing the skip-gram model follows the
iterature in neural network language models, and the basic skip-
ram formulation is defined using a softmax function: 𝑃 𝑟 ( 𝑢 𝑗 |ℏ ( 𝑢 𝑖 )) =

𝑒𝑥𝑝 ( 𝑧 𝑗 ⋅𝑧 𝑖 ) ∑
𝑗 ′∈𝑉 𝑒𝑥𝑝 ( 𝑧 𝑗 ′ ⋅𝑧 𝑖 ) 

, where z i and z j denote the embeddings of a center node

nd its neighbor respectively, i.e ., 𝑧 𝑖 = ℏ ( 𝑢 𝑖 ) and 𝑧 𝑗 = ℏ ( 𝑢 𝑗 ) . The produc-
ion z j · z i can be regarded as a similarity measure between z j and z i .
owever, dot product only considers means without the incorporation
f covariances. We assume that it is ubiquitous that the similarity be-
ween different types of nodes has directionality, i.e ., the “distance ” be-
ween different types of nodes is asymmetric. For instance, when we
ention a beginner of his/her research field, his/her research field will

e brought up. However, when we mention this research field, the pres-
igious experts in this field will come in our mind rather than this be-
inner. It means that the distance from the scholar to the research field
s unequal to the distance from this research field to this scholar. 

The key notion of skip-gram is to learn center node embeddings that
pecializes in predicting the nearby nodes, thus the similarity between
 center node and a context node is assumed to be asymmetric. Hence,
e use Kullback–Leibler(KL) divergence, a naturally asymmetric mea-

ure, to incorporate covariance (denotes uncertainties of node represen-
ations) into the model: 

( 𝑧 𝑖 , 𝑧 𝑗 ) = 𝐷 𝐾𝐿 (  𝑗 || 𝑖 ) = ∫𝑢 ∈ℝ  ( 𝑢 ; 𝝁𝑗 , 𝚺𝑗 ) log 
 ( 𝑢 ; 𝝁𝑗 , 𝚺𝑗 ) 
 ( 𝑢 ; 𝝁𝑖 , 𝚺𝑖 ) 

d 𝑥 (4) 

= 

1 
2 

(
log 

|𝚺𝑗 ||𝚺𝑖 | − 𝑙 + tr ( 𝚺−1 
𝑖 
𝚺𝑗 ) + ( 𝝁𝑖 − 𝝁𝑗 ) ⊤𝚺−1 

𝑖 
( 𝝁𝑖 − 𝝁𝑗 ) 

)
, 

here 𝑧 𝑖 , 𝑧 𝑗 ∈ ℝ 

𝑙 , 𝚺−1 and tr( 𝚺) indicate the inverse and the trace of
 covariance matrix, respectively. We assume that two attributes are
ncorrelated and each covariance matrix 𝚺i is diagonal. 𝐷 𝐾𝐿 (  𝑗 || 𝑖 )
enotes that an approximating distribution (  𝑖 ) is used to model an un-
nown distribution (  𝑗 ). The smaller 𝐷 𝐾𝐿 (  𝑗 || 𝑖 ) is, the more similar
he two distributions are. 
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In this way, Pr ( u j | � ( u i )) could be rewrote as: 

𝑃 𝑟 ( 𝑢 𝑗 |ℏ ( 𝑢 𝑖 )) = 

𝑒𝑥𝑝 [ ( 𝑧 𝑖 , 𝑧 𝑗 )] ∑
𝑗 ′∈𝑉 𝑒𝑥𝑝 [ ( 𝑧 𝑖 , 𝑧 𝑗 ′ )] 

. (5) 

Eq. (5) is computationally expensive due to the summation term.
ence, we utilize negative sampling [34] to redefine the loss function: 

 = log 𝜎[ ( 𝑧 𝑖 , 𝑧 𝑡 𝑗 )] + 

𝐾 ∑
𝑘 =1 

𝔼 𝑢 𝑡 
𝑘 
∼𝑃 𝑛𝑒𝑔 ( 𝑢 𝑡 ) 

(
log 𝜎[− ( 𝑧 𝑖 , 𝑧 𝑡 𝑘 )] 

)
, (6) 

here 𝜎( 𝑥 ) = 

1 
1+ 𝑒𝑥𝑝 (− 𝑥 ) and 𝑧 𝑡 

𝑗 
∈ 𝑁 𝑡 ( 𝑢 𝑖 ) . Negative samples denote nodes

ot in N t ( u i ), and the type of a negative sample 𝑧 𝑡 
𝑘 

should be as the same
s 𝑧 𝑡 

𝑗 
. For instance, in Fig. 2 , when v 1 is the center node, P -type neighbors

f v 1 is 𝑁 𝐴 ( 𝑣 1 ) = { 𝑎 1 , 𝑎 2 } and A -type neighbors of v 1 is 𝑁 𝐴 ( 𝑣 1 ) = { 𝑎 1 , 𝑎 2 } ,
nd the corresponding negative samplings are { p 2 , p 3 } and { a 3 , a 9 }. K
egative samples are collected from a noise distribution P neg ( u 

t ) for each
enter node z i , and K usually equals to the window size w . Inspired by

28] , AHNG set the selecting probability of 𝑢 𝑡 
𝑘 

as: 𝑝 ( 𝑢 𝑡 
𝑘 
) = 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ( 𝑢 𝑡 
𝑘 
) 
3 
4 

∑
𝑢 ∈𝑉 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ( 𝑢 ) 

3 
4 
,

here the numerator indicates the occurrence frequency of node 𝑢 𝑡 
𝑘 

in
ll meta-path based random walks, and denominator indicates the sum-
ation occurrence frequency of all nodes. We utilize gradient descent

n the attribute encoder to optimize Eq. (6) until either convergence or
he training epochs have been finished. 

. Experiments 

In this section, we empirically evaluate the effectiveness of AHNG on
hree classic benchmark tasks: (I) link prediction, ((II)) node clustering,
nd (III) multi-class classification. The inductiveness of AHNG is verified
t last. 

.1. Datasets 

AMiner 1 [35] is a collection of bibliographic entities such as papers,
uthors and venues. To construct our own attributed heterogeneous net-
ork, we extract 18,243 papers (P) which are written by 41,274 authors

A), and accepted by 12 venues (V). These 12 venues are uniformly se-
ected from four areas including Database, Data Mining, Computer Vision

nd Machine Learning . The raw data contains lots of authors with the
ame names, which makes us unable to accurately match authors with
heir corresponding papers. In order to eliminate the issue of name repe-
ition, we compute the similarity of affiliations of authors and papers via
alling Levenshtein package. The attribute information of 12 venues are
epresented by one hot encoding. The attribute information of a paper is
epresented by combining abstract of the paper and the encoding of its
elonging venue. The attributes of a author is represented by combin-
ng research interests of the author and venues which he/she has ever
ublished. 

.2. Baseline methods 

We compare AHNG to several state-of-art methods from different
spects: (1) embedding methods in homogeneous networks; (2) embed-
ing methods in heterogeneous networks; and (3) the variants of AHNG.
arameters of these baseline methods follow the settings in their respec-
ive experiments. 

• node2vec [11] is a representative of skip-gram based embedding
model in homogeneous networks. Node2vec defines a flexible notion
of a nodes network neighborhood and efficiently embeds nodes via
a biased random walk procedure. 
1 https://www.aminer.cn/citation . 
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• LINE [29] preserves both the local and global network structures in
large-scale homogeneous networks. We utilize both first-order and
second-order proximity and concatenate the vector representations
learned by LINE(1st) and LINE(2nd) into a longer vector as LINE’s
authors did. 

• metapath2vec ++ [21] is one of the state-of-the-art embedding al-
gorithms for large-scale heterogeneous networks. It exploits meta-
paths to guide random walkers and proposes a heterogeneous skip-
gram model to learn node embeddings. 

• AHNG_sy is one variant model of the proposed AHNG, which utilizes
a symmetric measurement, inner product, to compute the similarity
between nodes. We compare AHNG with AHNG_sy to inspect the
performance of asymmetric and symmetric measures. 

• AHNvec is another variant model of AHNG which represents each
node as a vector rather than a Gaussian distribution in a latent space.
We compare AHNG with AHNvec to inspect the necessity of consid-
ering the uncertainty of nodes during the training process. 

In the experiments, homogeneous network embedding methods are
mplemented by considering different types of nodes and links as the
ame type. For the meta-path based models, we specify the meta-path

to guide random walkers. 

.3. Effectiveness evaluation 

For all embedding methods, the dimension of node embeddings l
s set to 128. We follow the default parameter settings in each base-
ine methods: for node2vec, the number of walks per node wk , the walk
ength len, p and q for parameterized random walks are set to 10, 80,
 and 1, respectively; for metapath2vec ++ , 𝑤𝑘 = 1000 , 𝑙𝑒𝑛 = 100 and
egative samples 𝑛𝑒𝑔 _ 𝑠𝑎𝑚𝑝𝑙𝑒 = 5 ; for LINE, 𝑛𝑒𝑔 _ 𝑠𝑎𝑚𝑝𝑙𝑒 = 5 ; for the pro-
osed AHNG and its variants, AHNG_sy and AHNvec, 𝑤𝑘 = 5 , 𝑙𝑒𝑛 = 10
nd 𝑛𝑒𝑔 _ 𝑠𝑎𝑚𝑝𝑙𝑒 = 2 , the context window 𝑤 = 2 . For each of the three
lassic empirical tasks, we examine the parameter sensitivity of the pro-
osed AHNG by varying each of parameters with others fixed. 

.3.1. Link prediction 

etup . Link prediction is a mainstream task to evaluate the effective-
ess of the embeddings. Our extracted AMiner network contains two
ypes of links that need to be predicted: 𝐴 − 𝑃 , 𝑃 − 𝑉 . We confirm the
onnectivity of the entire graph, and then hide a set of existing/non-
xisting links from the original attributed heterogeneous network as the
est set according to a hidden ratio 𝜖 ∈ {10%, 20%, 30%, 40%, 50%} to
eport the performance. A validation set is created for hyper-parameter
uning and early stopping, including equal number of 10% randomly
elected existing and non existing links. 

Two frequent metrics are used to compare the link prediction per-
ormance of different methods: area under the ROC curve ( AUC ), average

recision ( AP ). The higher the values of AUC and AP are, the better the
rediction performance is. 

esults and discussion. The average link prediction results are presented
n Table 1 , and the best result in each column is highlighted in bold. As
e can see, the values of AUC and AP of the proposed AHNG and its vari-
nts outperform all the baselines, explicitly proving that the learned em-
eddings are useful. When the hidden ratio reduces from 10% to 50%,
he AUC values of node2vec, LINE and metapth2vec ++ are reduced by
5.69%, 22.85% and 31.26% respectively. However, AHNG and its vari-
nts can still obtain very good and stable performance, and AUC values
f AHNG declines by 2% approximately. The reason tends to be that
hese baseline models suffer from the information sparsity a lot as the
idden ratio 𝜖 increases, but AHNG and its variants conquer it by fusing
ttribute information. It is surprising that as a homogeneous network
mbedding method, node2vec performs so well in link prediction, and
egmental results of node2vec are on a par with AHNG. Compared to

https://www.aminer.cn/citation
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Table 1 

AUC and AP values for link prediction on AMiner data. 

Metric Method Hidden ratio 𝜖

10% 20% 30% 40% 50% 

AUC node2vec 0.9701 0.9641 0.9567 0.9409 0.8132 

LINE 0.8260 0.8188 0.8053 0.7781 0.5975 

metapath2vec ++ 0.6029 0.5592 0.5504 0.4545 0.2903 

AHN2vec 0.9617 0.9553 0.9500 0.9461 0.9404 

AHNG_sy 0.9703 0.9687 0.9675 0.9651 0.9625 

AHNG 0.9698 0.9688 0.9676 0.9653 0.9627 

AP node2vec 0.9669 0.9572 0.9526 0.9474 0.8646 

LINE 0.8752 0.8666 0.8534 0.8083 0.5499 

metapath2vec ++ 0.5937 0.5416 0.5364 0.4896 0.3998 

AHN2vec 0.9597 0.9591 0.9457 0.9407 0.9385 

AHNG_sy 0.9659 0.9572 0.9549 0.9536 0.9512 

AHNG 0.9669 0.9601 0.9553 0.9536 0.9520 

Table 2 

Multi-class classification via a KNN classifier. 

Metric Method Training ratio 𝜆

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Micro-F1 node2vec 0.9005 0.9219 0.9518 0.9429 0.9468 0.9515 0.9558 0.9577 0.9618 

line 0.9323 0.9475 0.9556 0.9604 0.9640 0.9665 0.9693 0.9703 0.9704 

metapath2vec ++ 0.9701 0.9721 0.9731 0.9752 0.9756 0.9758 0.9760 0.9777 0.9778 

AHNvec 0.9681 0.9694 0.9710 0.9722 0.9724 0.9731 0.9741 0.9743 0.9746 

AHNG_sy 0.9660 0.9688 0.9691 0.9704 0.9729 0.9748 0.9753 0.9761 0.9769 

AHNG 0.9719 0.9721 0.9733 0.9756 0.9758 0.9762 0.9770 0.9777 0.9778 

Macro-F1 node2vec 0.9002 0.9217 0.9514 0.9424 0.9463 0.9511 0.9556 0.9574 0.9610 

line 0.9321 0.9473 0.9552 0.9599 0.9636 0.9662 0.9691 0.9700 0.9699 

metapath2vec ++ 0.9700 0.9718 0.9727 0.9735 0.9737 0.9745 0.9752 0.9754 0.9777 

AHNvec 0.9682 0.9696 0.9711 0.9724 0.9723 0.9730 0.9741 0.9745 0.9750 

AHNG_sy 0.9662 0.9690 0.9694 0.9705 0.9725 0.9737 0.9745 0.9750 0.9772 

AHNG 0.9702 0.9719 0.9731 0.9736 0.9740 0.9747 0.9753 0.9761 0.9778 

Table 3 

Multi-class classification via a SVM classifier. 

Metric Method Training ratio 𝜆

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Micro-F1 node2vec 0.9483 0.9491 0.9517 0.9573 0.9584 0.9592 0.9595 0.9602 0.9617 

line 0.9344 0.9452 0.9507 0.9546 0.9569 0.9590 0.9612 0.9614 0.9620 

metapath2vec ++ 0.9596 0.9615 0.9635 0.9641 0.9662 0.9679 0.9695 0.9727 0.9730 

AHN2vec 0.9413 0.9487 0.9569 0.9573 0.9585 0.9601 0.9667 0.9696 0.9701 

AHNG_sy 0.9432 0.9496 0.9554 0.9588 0.9632 0.9643 0.9666 0.9689 0.9724 

AHNG 0.9598 0.9612 0.9636 0.9642 0.9665 0.9679 0.9699 0.9728 0.9733 

Macro-F1 node2vec 0.9484 0.9491 0.9514 0.9572 0.9582 0.9588 0.9601 0.9610 0.9612 

line 0.9346 0.9447 0.9501 0.9541 0.9563 0.9583 0.9593 0.9610 0.9614 

metapath2vec ++ 0.9589 0.9607 0.9621 0.9635 0.9661 0.9699 0.9713 0.9725 0.9734 

AHN2vec 0.9427 0.9522 0.9563 0.9574 0.9581 0.9595 0.9664 0.9694 0.9702 

AHNG_sy 0.9508 0.9569 0.9588 0.9607 0.9643 0.9684 0.9696 0.9703 0.9730 

AHNG 0.9591 0.9614 0.9625 0.9637 0.9666 0.9708 0.9719 0.9725 0.9735 
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2 1.Database, 2.Data Mining, 3.Computer Vision, 4.Machine Learning. 
3 https://scholar.google.com/citations?view_op = top_venues&hl = en&vq = eng . 
ode2vec and metapath2vec, AHNG and its variants require the small-
st wk and len to achieve the highest AUC and AP values, from their
igh efficiency. We assume that the efficiency also benefits from the fu-
ion of attributes. Metapath2vec ++ gets poor performance in this task
ut requires 𝑤𝑘 = 1000 and 𝑙𝑒𝑛 = 100 which will cost much space and
ime. The AUC and AP values of AHNG_sy are on a par with AHNG,
hich indicates that the measurements may not be important for link
rediction. The AUC and AP values of AHNvec are inferior to AHNG,
ndicating the necessity of capturing nodes uncertainty by embedding
odes with Gaussian embedding. 

.3.2. Multi-class classification 

etup . We evaluate the node classification performance on AMiner
ataset with ground-truth classes. In our AMiner attributed hetero-
226 
eneous network, venues are divided into 4 categories 2 according to
oogle Scholar 3 . The label of each paper is as the same as its venue’s

abel. The label of each author is assigned to the category with the ma-
ority of his/her publications. We assure each node in the dataset with
 label indicating its research area. 

The embeddings of nodes, generated from the above-mentioned net-
ork embedding methods, are used as features to classify each node into
ne of four labels. We randomly sample 10–90% with the interval 10
f nodes along with labels as the training data and use the remaining
odes to test the performance. We employ two classic classifier includ-
ng SVM classifier and KNN classifier, and repeat each process ten times
o obtain the average performance. 

https://www.scholar.google.com/citations?view_op=top_venues12hl=en12vq=eng
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Table 4 

The variance interval of metapath2vec ++ and AHNG across different training ratio in Table 2. 

Metric Method Training ratio 𝜆

10% 20% 30% 40% 50% 

Micro-F1 (%) metapath2vec ++ 97.0092 ± 0.0105 97.2054 ± 0.0103 97.3063 ± 0.0102 97.5211 ± 0.0101 97.5623 ± 0.0108 

AHNG 97.1892 ± 0.0105 97.2102 ± 0.0104 97.3315 ± 0.0101 97.5641 ± 0.0101 97.5843 ± 0.0104 

Macro-F1 (%) metapath2vec ++ 97.0002 ± 0.0101 97.1834 ± 0.0102 97.2665 ± 0.0103 97.3487 ± 0.0105 97.3725 ± 0.0110 

AHNG 97.0223 ± 0.0104 97.1942 ± 0.0102 97.3138 ± 0.0102 97.3611 ± 0.0102 97.4045 ± 0.0103 

Metric Method Training ratio 𝜆

60% 70% 80% 90% 

Micro-F1 (%) metapath2vec ++ 97.5778 ± 0.0102 97.6040 ± 0.0101 97.7667 ± 0.0102 97.7815 ± 0.0104 

AHNG 97.6237 ± 0.0103 97.7022 ± 0.0103 97.7704 ± 0.0104 97.7849 ± 0.0102 

Macro-F1 (%) metapath2vec ++ 97.446 ± 0.0102 97.5228 ± 0.0102 97.5442 ± 0.0101 97.7671 ± 0.0104 

AHNG 97.4729 ± 0.0102 97.5344 ± 0.0103 97.6083 ± 0.0102 97.7836 ± 0.0102 

  

  

Fig. 3. Parameter sensitivity in link pre- 

diction (hiding ratio 𝜖 = 30% ). 
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The classification performance is measured by Micro-F1 and Macro-

1 metrics. The higher the values of these three metrics are, the better
he multi-class classification performance is. 

esults and discussion. The classification results are shown in
able 2 (KNN classifier) and 3 (SVM classifier). The best results in each
olumn are also highlighted in bold. We observe that all methods per-
orm well in this task but AHNG still outperforms all baselines. Overall,
he heterogeneous network embedding methods perform better than ho-
ogeneous network embedding methods. Compared to link prediction

xperiments, metapath2vec ++ has outstanding performance in multi-
lass classification and sometimes it reached the highest value. Although
he F1 scores of metapath2vec ++ are close to AHNG, AHNG requires
227 
maller wk and len than metapath2vec ++ , which proves the efficiency
f AHNG. The stable F1 scores imply that AHNG is sufficient with only a
mall percentage of labeled nodes available. The F1 scores of AHNG_sy
nd AHNvec have little difference from AHNG, indicating that adopting
 symmetric measure or representing nodes with Gaussian distributions
ave little influence on nodes classification. 

We notice that the results in Table 2 (especially bold ones) have
inor varieties when we keep a few decimal places. Therefore, we es-
ecially calculate the variance/confidence interval of the 10 runs for
etapath2vec ++ and AHNG and keep more decimal places across dif-

erent training ratio to revel their differences. The results (in %) are
hown in Table 4 (mean preference 90% confidence intervals), proving
hat AHNG outperforms metapath2vec ++ . 
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Table 5 

Node clustering results in AMiner data. 

node2vec LINE metapath2vec AHNvec AHNG_sy AHNG 

NMI 0.6672 0.2522 0.6832 0.7498 0.6221 0.7669 

ARI 0.6693 0.1503 0.6971 0.7634 0.6253 0.7846 
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.3.3. Node clustering 

etup . Different from link prediction, node clustering is an unsuper-
ised learning task. We utilize the node embeddings learned by different
ethods as features, and apply K -Means as the base clustering model to
artition the nodes into four different clusters ( 𝐾 = 4 ). The ground-truth
lustering labels are as the same as the four categories used in the clas-
ification task above. All clustering experiments are conducted 10 times
o report an average performance. 

Both adjusted rand index ( ARI ) and normalized mutual information

 NMI ) are used as evaluation metrics. The value of ARI belongs to
−1 . 0 , 1 . 0] . Random labeling has an ARI close to 0.0, and 1.0 stands for
erfect match. NMI is a normalization of the Mutual Information score
arying from 0 (no mutual information) to 1 (perfect correlation). The
igher the ARI and NMI are, the better the clustering performance is. 

esults and discussion. Table 5 presents the average clustering results.
rom the results, we can see that AHNG significantly outperforms all
ther competitors, and obtains 9.97% and 8.37% improvements over
ode2vec and metapth2vec of NMI values respectively. Similarly, het-
rogeneous network embedding methods outperform the homogeneous
etwork embedding methods. The insufficient NMI and ARI values of
INE prove the viewpoint presented by its authors: it is more difficult
 

 

228 
o set the weights in an unsupervised task. Therefore LINE (1st + 2nd) is
nly applied to the scenario of supervised tasks. AHNG performs bet-
er than AHNG_sy and AHNvec, indicating the necessity of adopting an
symmetric measure and representing nodes with Gaussian distributions
n clustering. 

To sum up, the above three tasks imply that the proposed AHNG is
n effective and efficient model. Since AHNG_sy performs well in nodes
lassification and link prediction, we think there could be different met-
ics and they may perform reasonably well. However, AHNG performs
ell on all three tasks especially on node clustering, proving the advan-

age of asymmetric measurements when clustering. 

.4. Parameter sensitivity analysis 

We choose four major parameters in AHNG, i.e ., wk, len, l and
𝑒𝑔 _ 𝑠𝑎𝑚𝑝𝑙𝑒 to conduct the parameter sensitivity experiments. The com-
leteness of preserved network structure is relevant to wk and len , and
he validity of the learned embeddings is relevant to l. wk is set to 5, 10,
5, 20, 25, 30, 60 in turn; len is set to 2, 5, 10, 20, 30, 60, 100 in turn; l
s set to 2, 4, 8, 16, 32, 64, 128 in turn. Figs. 3–5 show the performance
f parameter sensitivity in link prediction, multi-class classification and
ode clustering, respectively. We set 𝑤𝑘 = 10 and 𝑙𝑒𝑛 = 20 to obtain a
omplete network structure when exploring the variations of l w.r.t the
valuation metrics. We have the following observations from these fig-
res: 

• Link prediction : Fig. 3 (a) and (b) show that AHNG are able to
achieve high AUC and AP values when wk and len are small. Further-
more, we find that when 𝑤𝑘 = 5 , the structure of our AHN are rather
incomplete. That is to say, the proposed AHNG can achieve good
 

 

Fig. 4. Parameter sensitivity in multi-class 

classification (training ratio 𝜖 = 50% ). 
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Fig. 5. Parameter sensitivity in node clustering 

(clusters 𝐾 = 4 ). 
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Table 6 

Inductive link prediction on AMiner . 

Metric Hiding ratio 𝜖

10% 25% 50% 

AUC 0.9395 0.9236 0.9096 

AP 0.9188 0.9041 0.8983 
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performance even when the network structure is incomplete. There-
fore, fusing the attributes can reduce the requirement for complete
network structures, then overcome the defect of traditional random
walk based models. In Fig. 3 (b), the AUC and AP values descend
a little as len increases which implies that the redundancy of net-
work structural information may disturb the network representation
learning. Fig. 3 (c) also achieves stability and robustness in l , and is
able to learn useful embeddings even with small embedding sizes.
Fig. 3 (d) indicates that 𝑛𝑒𝑔 _ 𝑠𝑎𝑚𝑝𝑙𝑒 contributes to the AUC and AP
values. Since wk and len are small, some positive samples are taken
as negative, leading to the decreasing of AUC and AP values. 

• Multi-class classification : A significant observation from Fig. 4 (a)
and (b) is that the F1 scores of AHNG are insensitive to the changes
of wk and len . In Fig. 4 (c), F1 scores of AHNG shows an increasing
trend as l increases being consistent with the efficiency of AHNG. In
Fig. 4 (d), the F1 scores increases firstly and then decreases with the
rise of 𝑛𝑒𝑔 _ 𝑠𝑎𝑚𝑝𝑙𝑒 . We assume that 𝑛𝑒𝑔 _ 𝑠𝑎𝑚𝑝𝑙𝑒 benefits the node rep-
resentations indeed but the scale of networks limits its contribution.

• Node clustering : Fig. 5 (a) and (b) show the ARI and NMI values
regarding different wk and len , respectively. It can be seen from
Fig. 5 (a) that the clustering performance can reach the optimum
value over the variation of wk and it remains nearly unchanged as wk

increases. The reason is in accordance with link prediction: AHNG
achieves good performance by utilizing node attributes to remedy
the incompleteness of network structure. Fig. 5 (b) indicates that a
descent trend emerges with the extension of len . That is to say, the
effectiveness of AHNG can be reduced by high redundancy of struc-
tural information. 

.5. Inductiveness 

There are three elements needed to consider during the learning pro-
ess of AHNG: network structure, semantic information and node at-
ributes. The elegance of introducing node attributes is that for a node
hich was absent the learning process, its embedding can be obtained

ndividually based on its attribute from the well-trained encoder net-
ork. That is, AHNG is an inductive model. We follow the experimental

ettings in [18] and perform the inductiveness experiment on AMiner
ttributed heterogeneous network: (I) randomly hide 10%, 25%, 50%
f nodes from the network respectively; (II) represent the rest of nodes
nd get the well-trained encoder network; (III) pass the hidden nodes
hrough the well-trained encoder network to collect their embeddings;
IV) evaluate the effectiveness in the link prediction task. 

Table 6 shows the results of inductive link prediction on AMiner .
ven though 50% nodes are hidden in networks, AHNG accomplishes
 good AUC and AP values. In other words, AHNG is compatible with
hose nodes that does not participate in the whole embedding process.
229 
n general, the involvement of a new node requires the retraining of
eural network based models, leading to enormous space and time costs.
ortunately, by incorporating abundant node attributes, AHNG shows
nductiveness. The inductiveness of AHNG facilitates us to embed new
odes, which results in the brilliance of AHNG comparing with existing
eterogeneous network embedding methods. 

. Conclusion 

Most existing network embedding methods are designed for homoge-
eous networks and ignore the diverse nodes attributes. However, many
eal-world networks are naturally heterogeneous and are affiliated with
bundant attributes. The manifold heterogeneous information includ-
ng structured and unstructured information throws out a challenge on
eamlessly fusing these information and constrains the applicability of
onventional network embedding methods in jeopardy. Furthermore,
he rich variety of node attributes leads to the uncertain representa-
ions of nodes. Taking the above problems into account, we study the
roblem of node embedding on attributed heterogeneous networks and
ropose a novel method AHNG in this paper. AHNG encodes the hetero-
eneous information with a neural network. Different from most tradi-
ional methods which represent nodes as vectors, AHNG embeds nodes
ith Gaussian distributions to capture the uncertainty of node repre-

entations. The collaboration of node attributes advances the skip-gram
ased methods and enables AHNG inductive. We conduct several clas-
ic experimental evaluations on the real-world datasets, and the results
emonstrate that AHNG not only can embed nodes more accurately but
lso is much more computationally efficient than its competitors. 
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