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Network embedding aims to encode nodes into a low-dimensional space with the structure and inherent properties
of the networks preserved. It is an upstream technique for network analyses such as link prediction and node clus-
tering. Most existing efforts are devoted to homogeneous or heterogeneous plain networks. However, networks in
real-world scenarios are usually heterogeneous and not plain, i.e., they contain multi-type nodes/links and diverse
node attributes. We refer such kind of networks with both heterogeneities and attributes as attributed hetero-
geneous networks (AHNs). Embedding AHNSs faces two challenges: (1) how to fuse heterogeneous information
sources including network structures, semantic information and node attributes; (2) how to capture uncertainty
of node embeddings caused by diverse attributes. To tackle these challenges, we propose a unified embedding
model which represents each node in an AHN with a Gaussian distribution (AHNG). AHNG fuses multi-type
nodes/links and diverse attributes through a two-layer neural network and captures the uncertainty by embed-
ding nodes as Gaussian distributions. Furthermore, the incorporation of node attributes makes AHNG inductive,
embedding previously unseen nodes or isolated nodes without additional training. Extensive experiments on a

large real-world dataset validate the effectiveness and efficiency of the proposed model.

1. Introduction

Network embedding is mainly designed to encode the graph data
into a low-dimensional latent space [1]. As an upstream technique, net-
work embedding benefits a lot of network analysis tasks, such as link
prediction [2,3] and node clustering [4], as well as attracts considerable
attention in various fields, ranging from linguistics [5,6], social sciences
[7,8] to biological networks [9].

Most of the network embedding methods [10-13] rely on a basic as-
sumption that the networks are homogeneous [14], that is, the networks
contain the same type of nodes and links. However, this assumption is
untenable as many real-world networks contain multi-type nodes and
links, holding rich structure and manifold semantics information, show-
ing heterogeneity. For example, a network in terms of film may contain
several types of nodes like director, movie, actor, and producer, as well as
different relationships among nodes, such as direct, play, and produce. In
addition, nodes in heterogeneous networks are usually affiliated with di-
verse attributes (e.g., director’s profile information and movie’s abstract)
which play an important role in the formation of network structure
[15]. In this paper, we refer such kind of heterogeneous networks

* Corresponding author.
E-mail address: liumengyue@stu.xjtu.edu.cn (M. Liu).

https://doi.org/10.1016/].inffus.2019.01.005

affiliated with diverse attributes as attributed heterogeneous networks
(AHN). Our goal is to design an effective model to represent AHNs in
a low-dimensional space with the structure and inherent properties
preserved.

1.1. Motivating example and challenges

Fig. 1 is a toy attributed heterogeneous bibliographic network which
contains multi-typed nodes including author (a), paper (p) and venue (v),
and diverse links including write (1), accept (r,) and cite (r3). Different
types of nodes have different attributes. As shown in Fig. 1, f;, f, indi-
cate attributes of authors which are depicted in blue, attributes of papers
are indicated by f3, f; which are depicted in green, attributes of venues
are indicated by fs, fg which are depicted in orange. Accompanying with
such abundant heterogeneous information, two challenges in AHN em-
bedding have to be addressed:

How to fuse heterogeneous information. Three elements are needed to
consider in AHN embedding: (1) multi-type nodes, (2) multi-type links,
and (3) diverse attributes of nodes, involving semantic types, topology
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Fig. 1. An illustrative example of attributed heterogeneous networks. As shown in the figure, the toy attributed bibliographic network contains (1) multi-type nodes,
(2) multi-type links, and each node is affiliated with (3) diverse attributes depicted in different colors. The attribute vector for each node is a concatenation of

different types of attributes.

information and unstructured text. A vast majority of homogeneous net-
work embedding methods [10,11,16,17] ignore all of the above three
elements. Some methods, such as G2G [18] and LANE [19], take at-
tributes into account but convert a heterogeneous network to a homoge-
neous one by a projection on a single node type. Such projection will lose
valuable information. Few heterogeneous network embedding methods
came out until the concept of meta-path [20] is presented. Meta-paths
are able to effectively capture semantic information of heterogeneous
networks. For example, in Fig. 1, there are two kinds of meta-path be-
tween a, and a4, indicating different semantic information: one meta-

path “a2 5 123 - a4” indicates a collaborative relationship between a,

ol

l ) r 1
and a,; another meta-path “42 — P> — V2 — P3 — d4” indicates a, and

a, may have common research interests, and the superscript —1 de-
notes the reverse of relation direction. Most meta-path based methods
[21,22] simultaneously fuse multi-type nodes and links but ignore node
attributes. Recent models regard node attributes as new kinds of nodes
but greatly increase the complexity of heterogeneous network topology
such as BL-MNE [23]. Therefore, it is arduous to seamlessly fuse multi-
type nodes/links and diverse attributes in a unified AHN embedding
model.

How to capture the uncertainty of node embeddings. Most existing net-
work embedding methods represent each node as a vector, i.e., depict a
node as a single point in the latent space, leading to a certain represen-
tation of a node. However, the complex and diverse attributes of nodes
actually make node representations uncertain. For example, in Fig. 1,
a, publishes p, and p, in v, and v, respectively. When the attributes of
these nodes are different or even opposite, e.g., v; and v, belong to two
different research areas respectively or p; and p, have diverse attributes,
they will cause variant effects while introducing the representation of
a,. Recent years, some methods [18,24] embed nodes in homogeneous
networks with distributions, but none of them is applicable for AHNs.
Intuitively, an AHN embedding model should learn the representation
of a node based on its neighbors, related links, and node attributes. En-
coding these various information magnify the uncertainty of nodes.

1.2. Solutions and contributions

To effectively cope with the aforementioned challenges, we propose
a novel model to represent each node in an attributed heterogeneous
network with a Gaussian distribution in a latent space, called AHNG.
AHNG encodes diverse attributes with a two-layer neural network and
preserves the structure and semantic information of AHN based on
meta-path based random walks [21], which can seamlessly fuse multi-
nodes/links and node attributes. AHNG represents each node as a Gaus-

222

sian distribution, which is capable of capturing the uncertainty of a node
representation. The main contributions of our work are summarized as
follows:

e We propose a novel model AHNG, which is able to fuse network
structure, semantic information and node attributes of AHNs in a
unified embedding model. AHNG shows inductiveness, i.e., it can be
generalized to previously unseen nodes or isolated nodes without
additional training.

e We represent each node with a multi-dimensional Gaussian distribu-
tion to capture the uncertainty of node representations and exper-
imentally prove that AHNG achieves a better performance by uti-
lizing KL-divergence, an asymmetric measurement, to measure the
dissimilarity among nodes.

¢ We conduct extensive experiments on a large real-world attributed
heterogeneous networks to investigate the effectiveness and effi-
ciency of the proposed AHNG.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 formulates the problem, and proposes a frame-
work of AHNG in details. Experimental results are discussed in Section 4.
Conclusions and future work are presented in Section 5.

2. Related work

In this work, we review the embedding methods in (1) homogeneous
networks and (2) heterogeneous networks.

2.1. Homogeneous network embedding

A vast majority of existing methods focus on embedding nodes in
homogeneous networks in previous years. The pioneer studies in graph
embedding always preserve the graph property with a matrix and fac-
torize the matrix to reduce the dimension of network data. For exam-
ple, LLE [25] represents the connections between nodes with an adja-
cency matrix and computes low-dimensional, neighborhood-preserving
embeddings of high-dimensional inputs. Laplacian Eigenmaps [26] is
a geometrically motivated algorithm for the construction of the repre-
sentation for nodes. Recently, some matrix factorization based meth-
ods incorporate text features to learn embeddings such as TADW [27].
However, matrix factorization based methods suffer from both compu-
tational and statistical performance drawbacks.

With the advent of deep learning techniques and the invention
of word2vec [28], researchers extend embedding methods in natural
language processing from sequences of words to graphs. DeepWalk
[10] and Node2vec [11] preserve higher-order proximity between nodes
based on skip-gram model. LINE [29] preserves both first order and sec-
ond proximities between a node and its contexts. SDNE [30] employs
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deep auto-encoders to capture the highly non-linear network structure,
which preserve the global and local structure. VAGE [31] applies a graph
convolutional network encoder and an inner product decoder to the task
of graph embedding. G2G [18] considers node attributes and utilizes en-
coders to learn embeddings. Deep learning based methods learn more
and deeper semantic information of the network compared to shallow
representation methods.

Previous network embedding methods in homogeneous networks
cannot be directly applied to heterogeneous networks which are linked
with real-world scenarios more naturally.

2.2. Heterogeneous networks embedding

Network embedding in heterogeneous networks emerged a few years
ago and quickly became a flourishing research field. Existing network
embedding techniques in heterogeneous networks can be broadly di-
vided into three types: (1) random walk based (2) network factorization
based (3) deep neural network based.

Due to the multi-type of nodes and links in heterogeneous networks,
it is difficult for random walkers to find a walk mode to traverse the
whole networks. Meta-paths limit the liberty of random walkers, reduc-
ing the traversal complexity in AHNs. For example, inspired by skip-
gram model on homogeneous networks, metapath2vec [21] proposes a
heterogeneous skip-gram model and utilizes meta-path based random
walks to traverses the whole network. HIN2Vec [22] also utilizes spe-
cific meta-paths and proposes a neural network model to capture the
rich semantics embedded in heterogeneous networks. However, meta-
path based random walk models can not completely preserve the whole
structure of a network when the number of walks wk for each node and
walk lengths len are too small. In other words, unreachable nodes and
isolated nodes can not be represented at all.

Network factorization based techniques divide a big heterogeneous
network into several small bipartite graphs to ease the complexity of
heterogeneous network. For example, PTE [32] divides a heterogeneous
text network into word-word network, word-document network and
word-label network, and then utilizes both labeled and unlabeled data
to learn the embedding of text. However, network factorization based
techniques have no unified standard when dividing different networks
into several small ones.

Deep neural network based models provide a robust and effective
embedding way based on deep learning techniques, which reflect more
and deeper semantic information of the network. Recent years, some
deep neural networks based methods embed heterogeneous networks
with auxiliary informations. For example, HNE [1] learns representa-
tion for texts and images through a deep neural network and a con-
volutional neural network respectively, and then unifies them into a
common space using linear transformation but neglects the semantic in-
formation among nodes. BL-MNE [23] regards attributes as new kinds
of nodes and utilizes auto-encoders to encode each node, but increases
the complexity of network topology. Meanwhile, few deep neural net-
work based models in heterogeneous networks take uncertainty of node
representations into account.

3. The proposed AHNG
3.1. Problem formulation and framework

Following the standard notation, we use the normal lowercase char-
acters (e.g., u) to denote scalars and bold lowercase characters (e.g., f)
to indicate vectors. Matrices are written as bold uppercase characters
(e.g., F) and uppercase italic characters (e.g., V) for sets.

Definition 1. An attributed heterogeneous network is a directed
graph G = (V, E,F) with a node mapping function ¢ : V — A, and a
link mapping function ¢ : E - R, where each node u€ V belongs to
one type A, € A and each link e EC VXV belongs to one type r €
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R, and |A| + |R| > 2. Moreover, F;, a row vector of attribute matrix
F=[F,F,,.. F,.. F|V|]T, denotes the attribute information of the i-th
node u; € V, concatenating all types of node attributes in A.

For example, in Fig. 2, G =(V,E,F), where V = {a;,a,,a3, a4,
D1> P25 D3> P4 V1502 )5 E = {aypy, pyvy, ... }, ¢: V=>A{A, P, V}, @: E— {write,
accept}, and F = {F,,...,F ,}. As for node attributes, {f;, f,} denote au-
thor attributes: affiliations and research interest; {f3, f4} denote paper at-
tributes: paper title and abstract; {fs, f¢} denote venue attributes: venue
name and venue introduction. More specifically, every node is represented
by an attribute vector F; which contain six kinds of attributes (f1., ..., f¢).
Suppose that we use an attribute vector F; to represent an author u;, the
values of attributes f;, f, are given by the author u; while the attributes
f3, fa» f5, f are set as zeros because they are used to describe paper and
venue. besides, the dimension of each attribute f; is defined by users.

Definition 2. A meta-path [33] defines a composite relation R =
RjoR,0 ... oR, between type A; and A, ;, which is denoted in the form

R Ry R,
Oof PiA] —5 Ay —> - — Aps, and 1 (1> 1) is the length of P. Each sub-
script (e.g. 1,2, ...,1) represents the position of a type or a link in P.

Meta-paths extract semantic information effectively. For example,
ur,‘('e/n"
A de-

write write™!

as shown in Fig. 2, meta-path A —

accept

vrite write™

. . "
notes two authors are interested in the same research, A — P —— A

write™! write

denotes collaboration relationship, and P —— A —— P denotes two

papers are written by a same author.
The problem of network embedding on attributed heterogeneous net-
works can be formally defined as follows:

Problem formulation. Given an attributed heterogeneous network G =
{V,E,F}, where |V| = n and F € R, the embedding of G aims to en-
code each node u; € V with a lower-dimensional Gaussian distribution
z; = N(u;, Z;), where y; € R, X, € R™ with I<n, d.

Framework. AHNG aims to encode nodes into a latent low-dimensional
space by leveraging three types of information: multi-type nodes, multi-
type links, and node attributes. The framework of the proposed AHNG
is shown in Fig. 2, which consists of three essential components: (I) at-
tribute encoder: an attribute encoder is designed to encode diverse node
attributes and output mean u and covariance X for each node v; in V; (II)
meta-path based random walker: a random walker traverses the hetero-
geneous network based on preassigned meta-paths M, to preserve the
semantic and structure information of the AHN; (III) learner: to update
the parameters of the attribute encoder and learn the node embedding.

3.2. Attribute encoder

A two-layer neural network £, called attribute encoder, processes the
node’s attributes, outputs mean and covariance for each node. More
specifically, as shown in Fig. 2, f; represents the attribute vector for each
node u;, and the first layer outputs an intermediate representation y; for
u;. The layer y and layer X output mean y; and covariance X; respec-
tively for node u;. Formally, the relationship between these variables
can be represented by the following equations:

yi=0; (W £ +b))
Hi=W,y +b, s
X =0,(W, yi +b3)

6]

where o, and o, represent relu and elu active functions, and W;, W, Wy
represent the weight matrix of layer 1, 4 and X respectively. The well-
tuned parameters of the attribute encoder enable AHNG to be an induc-
tive learning model.
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Fig. 2. The framework of the proposed AHNG.

3.3. Meta-path based random walker

We preserve structure and semantic information of AHN by demon-
strating it as a set of random walk paths. Different from random walk-
based models in homogeneous network, in which a random walker tra-
verses the whole network without constraint, a meta-path based ran-

dom walker [21] traverse an AHN based on preassigned meta-paths. For
R, R
instance, given a meta-path ¥ :A; ENENEER A, LR Ay -+ — Ap,

and u; denotes node u; belonging to type t. The random walker goes
to node u/ at step j, and at step j + 1 the node u,,; should satisfied with
(u},u;y1) € E and ¢(u;,1) = t + 1. As for those nodes who conform to con-
ditions above, one of them is picked out randomly.

In order to cover every node in the network, meta-path based ran-
dom walk models should assure both of the number of walks and walk
lengths to be sufficient. For instance, metapath2vec achieves better per-
formance when the number of walks (wk) and walk lengths (len) are
larger than 800 and 100 respectively. However, due to the incorpora-
tion of attributes, we experimentally show that even when the two pa-
rameters are very slim such as wk = 5 and len = 2, AHNG still performs
well.

3.4. Learner

Skip-gram [28] models maximize the probability of observing a
neighborhood node (context) based on a center node embedding. These
models based on the conditional independence assumption: given a
learned embedding, observing neighboring nodes become independent
[10,11,29]. We follow the clue and formulate AHNG with considering
the heterogeneity of networks and attributes of nodes:

arg max Z Z 10gPr<N,(u;)|h(M;)),

h u; €V teA

@)

N(u) CV collects the t-type (r € .A) neighborhoods which appears
within the window-size w of the center node u;, ie., N,(y)=
{u;ld(u;,u;) < w), u; denotes node u; belonging to type t, and d(u;, uj)
denotes the shortest distance between u; and u;.

224

Based on the conditional independence assumption, we approximate
the conditional probability in Eq. (2) as follows:
3

Pr(NGn@)) = T] Prolaw).

Uy €N, (u;)

One approach for parameterizing the skip-gram model follows the
literature in neural network language models, and the basic skip-
gram formulation is defined using a softmax function: Pr(u;|h(y;)) =

exp(z;-z;)
Zj’ev exp(zj/ -Z;)
and its neighbor respectively, ie., z; = h(4;) and z; = h(u;). The produc-
tion z;-2; can be regarded as a similarity measure between z; and z;.
However, dot product only considers means without the incorporation
of covariances. We assume that it is ubiquitous that the similarity be-
tween different types of nodes has directionality, i.e., the “distance” be-
tween different types of nodes is asymmetric. For instance, when we
mention a beginner of his/her research field, his/her research field will
be brought up. However, when we mention this research field, the pres-
tigious experts in this field will come in our mind rather than this be-
ginner. It means that the distance from the scholar to the research field
is unequal to the distance from this research field to this scholar.

The key notion of skip-gram is to learn center node embeddings that
specializes in predicting the nearby nodes, thus the similarity between
a center node and a context node is assumed to be asymmetric. Hence,
we use Kullback-Leibler(KL) divergence, a naturally asymmetric mea-
sure, to incorporate covariance (denotes uncertainties of node represen-
tations) into the model:

, where z; and z; denote the embeddings of a center node

Nwiny )
H(Zi,zj)=DKL(M||M)=/MERN(M;IJJ,E )1ogm x 4
1(1 E—1+tr(2 TS (- ) 2 (- ))
glzl Hi — Hj Hi— Hj

where z;,z ;€ R/, 7! and tr(X) indicate the inverse and the trace of
a covariance matrix, respectively. We assume that two attributes are
uncorrelated and each covariance matrix ¥; is diagonal. Dy (N;[|N;)
denotes that an approximating distribution (N;) is used to model an un-
known distribution (V). The smaller Dy (N;||N;) is, the more similar
the two distributions are.
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In this way, Pr(uj|fi(ui)) could be rewrote as:
exp[H(z;, z;)]
Zj’eV exp[H(z;, zj)] ’

Eq. (5) is computationally expensive due to the summation term.
Hence, we utilize negative sampling [34] to redefine the loss function:

Pr(u;|hu;)) = (&)

K
£ =1ogolH(z. 21+ X By -y (102 0l-H(z, 2)1), (6)
k=1

not in N,(14), and the type of a negative sample z; should be as the same

as z'.. For instance, in Fig. 2, when v, is the center node, P-type neighbors

of v; is N4(v)) = {a,,a,} and A-type neighbors of v; is N4(v) = {a;,a,},

and the corresponding negative samplings are {p,, p3} and {a3, ag}. K

negative samples are collected from a noise distribution Pneg(uf) for each

center node z;, and K usually equals to the window size w. Inspired by
3

where ¢(x) = and z; € N,(u;). Negative samples denote nodes

counter(u;( )4

[28], AHNG set the selecting probability of u| as: p(u}) =

3>
ZuEV counter(u) 4
where the numerator indicates the occurrence frequency of node u} in

all meta-path based random walks, and denominator indicates the sum-
mation occurrence frequency of all nodes. We utilize gradient descent
on the attribute encoder to optimize Eq. (6) until either convergence or
the training epochs have been finished.

4. Experiments

In this section, we empirically evaluate the effectiveness of AHNG on
three classic benchmark tasks: (I) link prediction, ((II)) node clustering,
and (III) multi-class classification. The inductiveness of AHNG is verified
at last.

4.1. Datasets

AMiner ! [35] is a collection of bibliographic entities such as papers,
authors and venues. To construct our own attributed heterogeneous net-
work, we extract 18,243 papers (P) which are written by 41,274 authors
(A), and accepted by 12 venues (V). These 12 venues are uniformly se-
lected from four areas including Database, Data Mining, Computer Vision
and Machine Learning. The raw data contains lots of authors with the
same names, which makes us unable to accurately match authors with
their corresponding papers. In order to eliminate the issue of name repe-
tition, we compute the similarity of affiliations of authors and papers via
calling Levenshtein package. The attribute information of 12 venues are
represented by one hot encoding. The attribute information of a paper is
represented by combining abstract of the paper and the encoding of its
belonging venue. The attributes of a author is represented by combin-
ing research interests of the author and venues which he/she has ever
published.

4.2. Baseline methods

We compare AHNG to several state-of-art methods from different
aspects: (1) embedding methods in homogeneous networks; (2) embed-
ding methods in heterogeneous networks; and (3) the variants of AHNG.
Parameters of these baseline methods follow the settings in their respec-
tive experiments.

e node2vec [11] is a representative of skip-gram based embedding
model in homogeneous networks. Node2vec defines a flexible notion
of a nodes network neighborhood and efficiently embeds nodes via
a biased random walk procedure.

! https://www.aminer.cn/citation.
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LINE [29] preserves both the local and global network structures in

large-scale homogeneous networks. We utilize both first-order and

second-order proximity and concatenate the vector representations
learned by LINE(1st) and LINE(2nd) into a longer vector as LINE’s

authors did.

metapath2vec++ [21] is one of the state-of-the-art embedding al-

gorithms for large-scale heterogeneous networks. It exploits meta-

paths to guide random walkers and proposes a heterogeneous skip-
gram model to learn node embeddings.

e AHNG: sy is one variant model of the proposed AHNG, which utilizes
a symmetric measurement, inner product, to compute the similarity
between nodes. We compare AHNG with AHNG_ sy to inspect the
performance of asymmetric and symmetric measures.

e AHNvec is another variant model of AHNG which represents each

node as a vector rather than a Gaussian distribution in a latent space.

We compare AHNG with AHNvec to inspect the necessity of consid-

ering the uncertainty of nodes during the training process.

In the experiments, homogeneous network embedding methods are
implemented by considering different types of nodes and links as the
same type. For the meta-path based models, we specify the meta-path

write accept™!
A

accept write

P —— A to guide random walkers.

4.3. Effectiveness evaluation

For all embedding methods, the dimension of node embeddings [
is set to 128. We follow the default parameter settings in each base-
line methods: for node2vec, the number of walks per node wk, the walk
length len, p and q for parameterized random walks are set to 10, 80,
1 and 1, respectively; for metapath2vec++, wk = 1000, len = 100 and
negative samples neg_sample = 5; for LINE, neg_sample = 5; for the pro-
posed AHNG and its variants, AHNG_sy and AHNvec, wk =5, len = 10
and neg_sample = 2, the context window w = 2. For each of the three
classic empirical tasks, we examine the parameter sensitivity of the pro-
posed AHNG by varying each of parameters with others fixed.

4.3.1. Link prediction

Setup. Link prediction is a mainstream task to evaluate the effective-
ness of the embeddings. Our extracted AMiner network contains two
types of links that need to be predicted: A — P, P — V. We confirm the
connectivity of the entire graph, and then hide a set of existing/non-
existing links from the original attributed heterogeneous network as the
test set according to a hidden ratio ¢ € {10%, 20%, 30%, 40%, 50%} to
report the performance. A validation set is created for hyper-parameter
tuning and early stopping, including equal number of 10% randomly
selected existing and non existing links.

Two frequent metrics are used to compare the link prediction per-
formance of different methods: area under the ROC curve (AUC), average
precision (AP). The higher the values of AUC and AP are, the better the
prediction performance is.

Results and discussion. The average link prediction results are presented
in Table 1, and the best result in each column is highlighted in bold. As
we can see, the values of AUC and AP of the proposed AHNG and its vari-
ants outperform all the baselines, explicitly proving that the learned em-
beddings are useful. When the hidden ratio reduces from 10% to 50%,
the AUC values of node2vec, LINE and metapth2vec++ are reduced by
15.69%, 22.85% and 31.26% respectively. However, AHNG and its vari-
ants can still obtain very good and stable performance, and AUC values
of AHNG declines by 2% approximately. The reason tends to be that
these baseline models suffer from the information sparsity a lot as the
hidden ratio ¢ increases, but AHNG and its variants conquer it by fusing
attribute information. It is surprising that as a homogeneous network
embedding method, node2vec performs so well in link prediction, and
segmental results of node2vec are on a par with AHNG. Compared to
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Table 1
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AUC and AP values for link prediction on AMiner data.

Metric Method Hidden ratio e
10% 20% 30% 40% 50%
AUC node2vec 0.9701 0.9641 0.9567 0.9409 0.8132
LINE 0.8260 0.8188 0.8053 0.7781 0.5975
metapath2vec++ 0.6029 0.5592 0.5504 0.4545 0.2903
AHN2vec 0.9617 0.9553 0.9500 0.9461 0.9404
AHNG_sy 0.9703 0.9687 0.9675 0.9651 0.9625
AHNG 0.9698 0.9688 0.9676 0.9653 0.9627
AP node2vec 0.9669 0.9572 0.9526 0.9474 0.8646
LINE 0.8752 0.8666 0.8534 0.8083 0.5499
metapath2vec++ 0.5937 0.5416 0.5364 0.4896 0.3998
AHN2vec 0.9597 0.9591 0.9457 0.9407 0.9385
AHNG_sy 0.9659 0.9572 0.9549 0.9536 0.9512
AHNG 0.9669 0.9601 0.9553 0.9536 0.9520
Table 2
Multi-class classification via a KNN classifier.
Metric Method Training ratio A
10% 20% 30% 40% 50% 60% 70% 80% 90%
Micro-F1 node2vec 0.9005 0.9219 0.9518 0.9429 0.9468 0.9515 0.9558 0.9577 0.9618
line 0.9323 0.9475 0.9556 0.9604 0.9640 0.9665 0.9693 0.9703 0.9704
metapath2vec++ 0.9701 0.9721 0.9731 0.9752 0.9756 0.9758 0.9760 0.9777 0.9778
AHNvec 0.9681 0.9694 0.9710 0.9722 0.9724 0.9731 0.9741 0.9743 0.9746
AHNG_sy 0.9660 0.9688 0.9691 0.9704 0.9729 0.9748 0.9753 0.9761 0.9769
AHNG 0.9719 0.9721 0.9733 0.9756 0.9758 0.9762 0.9770 0.9777 0.9778
Macro-F1 node2vec 0.9002 0.9217 0.9514 0.9424 0.9463 0.9511 0.9556 0.9574 0.9610
line 0.9321 0.9473 0.9552 0.9599 0.9636 0.9662 0.9691 0.9700 0.9699
metapath2vec++ 0.9700 0.9718 0.9727 0.9735 0.9737 0.9745 0.9752 0.9754 0.9777
AHNvec 0.9682 0.9696 0.9711 0.9724 0.9723 0.9730 0.9741 0.9745 0.9750
AHNG_sy 0.9662 0.9690 0.9694 0.9705 0.9725 0.9737 0.9745 0.9750 0.9772
AHNG 0.9702 0.9719 0.9731 0.9736 0.9740 0.9747 0.9753 0.9761 0.9778
Table 3
Multi-class classification via a SVM classifier.
Metric Method Training ratio 4
10% 20% 30% 40% 50% 60% 70% 80% 90%
Micro-F1 node2vec 0.9483 0.9491 0.9517 0.9573 0.9584 0.9592 0.9595 0.9602 0.9617
line 0.9344 0.9452 0.9507 0.9546 0.9569 0.9590 0.9612 0.9614 0.9620
metapath2vec++ 0.9596 0.9615 0.9635 0.9641 0.9662 0.9679 0.9695 0.9727 0.9730
AHN2vec 0.9413 0.9487 0.9569 0.9573 0.9585 0.9601 0.9667 0.9696 0.9701
AHNG_sy 0.9432 0.9496 0.9554 0.9588 0.9632 0.9643 0.9666 0.9689 0.9724
AHNG 0.9598 0.9612 0.9636 0.9642 0.9665 0.9679 0.9699 0.9728 0.9733
Macro-F1 node2vec 0.9484 0.9491 0.9514 0.9572 0.9582 0.9588 0.9601 0.9610 0.9612
line 0.9346 0.9447 0.9501 0.9541 0.9563 0.9583 0.9593 0.9610 0.9614
metapath2vec++ 0.9589 0.9607 0.9621 0.9635 0.9661 0.9699 0.9713 0.9725 0.9734
AHN2vec 0.9427 0.9522 0.9563 0.9574 0.9581 0.9595 0.9664 0.9694 0.9702
AHNG_sy 0.9508 0.9569 0.9588 0.9607 0.9643 0.9684 0.9696 0.9703 0.9730
AHNG 0.9591 0.9614 0.9625 0.9637 0.9666 0.9708 0.9719 0.9725 0.9735

node2vec and metapath2vec, AHNG and its variants require the small-
est wk and len to achieve the highest AUC and AP values, from their
high efficiency. We assume that the efficiency also benefits from the fu-
sion of attributes. Metapath2vec++ gets poor performance in this task
but requires wk = 1000 and /en = 100 which will cost much space and
time. The AUC and AP values of AHNG sy are on a par with AHNG,
which indicates that the measurements may not be important for link
prediction. The AUC and AP values of AHNvec are inferior to AHNG,
indicating the necessity of capturing nodes uncertainty by embedding
nodes with Gaussian embedding.

4.3.2. Multi-class classification
Setup. We evaluate the node classification performance on AMiner
dataset with ground-truth classes. In our AMiner attributed hetero-

geneous network, venues are divided into 4 categories® according to
Google Scholar®. The label of each paper is as the same as its venue’s
label. The label of each author is assigned to the category with the ma-
jority of his/her publications. We assure each node in the dataset with
a label indicating its research area.

The embeddings of nodes, generated from the above-mentioned net-
work embedding methods, are used as features to classify each node into
one of four labels. We randomly sample 10-90% with the interval 10
of nodes along with labels as the training data and use the remaining
nodes to test the performance. We employ two classic classifier includ-
ing SVM classifier and KNN classifier, and repeat each process ten times
to obtain the average performance.

2 1.Database, 2.Data Mining, 3.Computer Vision, 4.Machine Learning.
3 https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng.
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Table 4

The variance interval of metapath2vec++ and AHNG across different training ratio in Table 2.
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Training ratio A

10%

20%

30%

40%

50%

97.0092 +0.0105
97.1892 +0.0105
97.0002 +0.0101
97.0223 +0.0104

97.2054 +0.0103
97.2102 +0.0104
97.1834 +0.0102
97.1942 +0.0102

97.3063 +0.0102
97.3315+0.0101
97.2665 +0.0103
97.3138 +0.0102

97.5211 +0.0101
97.5641 +0.0101
97.3487 +0.0105
97.3611 +0.0102

97.5623 +£0.0108
97.5843 +0.0104
97.3725+0.0110
97.4045 +0.0103

Training ratio A

60%

70%

80%

90%

Metric Method

Micro-F1 (%) metapath2vec++
AHNG

Macro-F1 (%) metapath2vec++
AHNG

Metric Method

Micro-F1 (%) metapath2vec++
AHNG

Macro-F1 (%) metapath2vec++
AHNG

97.5778 +0.0102
97.6237 +0.0103
97.446 +0.0102

97.4729 +0.0102

97.6040 +0.0101
97.7022 +0.0103
97.5228 +0.0102
97.5344 +0.0103

97.7667 +0.0102
97.7704 + 0.0104
97.5442+0.0101

97.6083 +0.0102

97.7815+0.0104
97.7849 +0.0102
97.7671 +0.0104
97.7836 +0.0102

Fig. 3. Parameter sensitivity in link pre-
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The classification performance is measured by Micro-F1 and Macro-
F1 metrics. The higher the values of these three metrics are, the better
the multi-class classification performance is.

Results and discussion. The classification results are shown in
Table 2 (KNN classifier) and 3 (SVM classifier). The best results in each
column are also highlighted in bold. We observe that all methods per-
form well in this task but AHNG still outperforms all baselines. Overall,
the heterogeneous network embedding methods perform better than ho-
mogeneous network embedding methods. Compared to link prediction
experiments, metapath2vec++ has outstanding performance in multi-
class classification and sometimes it reached the highest value. Although
the F1 scores of metapath2vec++ are close to AHNG, AHNG requires

3
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# negtive samples neg_sample

(d) AUC & AP w.r.t neg_sample

smaller wk and len than metapath2vec++, which proves the efficiency
of AHNG. The stable F1 scores imply that AHNG is sufficient with only a
small percentage of labeled nodes available. The F1 scores of AHNG_sy
and AHNvec have little difference from AHNG, indicating that adopting
a symmetric measure or representing nodes with Gaussian distributions
have little influence on nodes classification.

We notice that the results in Table 2 (especially bold ones) have
minor varieties when we keep a few decimal places. Therefore, we es-
pecially calculate the variance/confidence interval of the 10 runs for
metapath2vec++ and AHNG and keep more decimal places across dif-
ferent training ratio to revel their differences. The results (in %) are
shown in Table 4 (mean preference 90% confidence intervals), proving
that AHNG outperforms metapath2vec++.
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Table 5
Node clustering results in AMiner data.
node2vec  LINE metapath2vec ~ AHNvec ~ AHNGsy  AHNG
NMI 0.6672 0.2522 0.6832 0.7498 0.6221 0.7669
ARI 0.6693 0.1503 0.6971 0.7634 0.6253 0.7846

4.3.3. Node clustering

Setup. Different from link prediction, node clustering is an unsuper-
vised learning task. We utilize the node embeddings learned by different
methods as features, and apply K-Means as the base clustering model to
partition the nodes into four different clusters (K = 4). The ground-truth
clustering labels are as the same as the four categories used in the clas-
sification task above. All clustering experiments are conducted 10 times
to report an average performance.

Both adjusted rand index (ARI) and normalized mutual information
(NMI) are used as evaluation metrics. The value of ARI belongs to
[-1.0,1.0]. Random labeling has an ARI close to 0.0, and 1.0 stands for
perfect match. NMI is a normalization of the Mutual Information score
varying from O (no mutual information) to 1 (perfect correlation). The
higher the ARI and NMI are, the better the clustering performance is.

Results and discussion. Table 5 presents the average clustering results.
From the results, we can see that AHNG significantly outperforms all
other competitors, and obtains 9.97% and 8.37% improvements over
node2vec and metapth2vec of NMI values respectively. Similarly, het-
erogeneous network embedding methods outperform the homogeneous
network embedding methods. The insufficient NMI and ARI values of
LINE prove the viewpoint presented by its authors: it is more difficult
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to set the weights in an unsupervised task. Therefore LINE (1st+2nd) is
only applied to the scenario of supervised tasks. AHNG performs bet-
ter than AHNG _sy and AHNvec, indicating the necessity of adopting an
asymmetric measure and representing nodes with Gaussian distributions
in clustering.

To sum up, the above three tasks imply that the proposed AHNG is
an effective and efficient model. Since AHNG_sy performs well in nodes
classification and link prediction, we think there could be different met-
rics and they may perform reasonably well. However, AHNG performs
well on all three tasks especially on node clustering, proving the advan-
tage of asymmetric measurements when clustering.

4.4. Parameter sensitivity analysis

We choose four major parameters in AHNG, ie., wk, len, | and
neg_sample to conduct the parameter sensitivity experiments. The com-
pleteness of preserved network structure is relevant to wk and len, and
the validity of the learned embeddings is relevant to L wk is set to 5, 10,
15, 20, 25, 30, 60 in turn; len is set to 2, 5, 10, 20, 30, 60, 100 in turn; I
is setto 2, 4, 8, 16, 32, 64, 128 in turn. Figs. 3-5 show the performance
of parameter sensitivity in link prediction, multi-class classification and
node clustering, respectively. We set wk = 10 and /en = 20 to obtain a
complete network structure when exploring the variations of [ w.r.t the
evaluation metrics. We have the following observations from these fig-
ures:

e Link prediction: Fig. 3(a) and (b) show that AHNG are able to
achieve high AUC and AP values when wk and len are small. Further-
more, we find that when wk = 5, the structure of our AHN are rather
incomplete. That is to say, the proposed AHNG can achieve good

100 ; - 100 ; - Fig. 4. Parameter sensitivity in multi-class
E:z 2‘:;?;;11 ﬁmz 2:;?;5:11 classification (training ratio € = 50%).
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Fig. 5. Parameter sensitivity in node clustering
(clusters K = 4).
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performance even when the network structure is incomplete. There-
fore, fusing the attributes can reduce the requirement for complete
network structures, then overcome the defect of traditional random
walk based models. In Fig. 3(b), the AUC and AP values descend
a little as len increases which implies that the redundancy of net-
work structural information may disturb the network representation
learning. Fig. 3(c) also achieves stability and robustness in [, and is
able to learn useful embeddings even with small embedding sizes.
Fig. 3(d) indicates that neg_sample contributes to the AUC and AP
values. Since wk and len are small, some positive samples are taken
as negative, leading to the decreasing of AUC and AP values.
Multi-class classification: A significant observation from Fig. 4(a)
and (b) is that the F1 scores of AHNG are insensitive to the changes
of wk and len. In Fig. 4(c), F1 scores of AHNG shows an increasing
trend as [ increases being consistent with the efficiency of AHNG. In
Fig. 4(d), the F1 scores increases firstly and then decreases with the
rise of neg_sample. We assume that neg_sample benefits the node rep-
resentations indeed but the scale of networks limits its contribution.
Node clustering: Fig. 5(a) and (b) show the ARI and NMI values
regarding different wk and len, respectively. It can be seen from
Fig. 5(a) that the clustering performance can reach the optimum
value over the variation of wk and it remains nearly unchanged as wk
increases. The reason is in accordance with link prediction: AHNG
achieves good performance by utilizing node attributes to remedy
the incompleteness of network structure. Fig. 5(b) indicates that a
descent trend emerges with the extension of len. That is to say, the
effectiveness of AHNG can be reduced by high redundancy of struc-
tural information.

4.5. Inductiveness

There are three elements needed to consider during the learning pro-
cess of AHNG: network structure, semantic information and node at-
tributes. The elegance of introducing node attributes is that for a node
which was absent the learning process, its embedding can be obtained
individually based on its attribute from the well-trained encoder net-
work. That is, AHNG is an inductive model. We follow the experimental
settings in [18] and perform the inductiveness experiment on AMiner
attributed heterogeneous network: (I) randomly hide 10%, 25%, 50%
of nodes from the network respectively; (II) represent the rest of nodes
and get the well-trained encoder network; (III) pass the hidden nodes
through the well-trained encoder network to collect their embeddings;
(IV) evaluate the effectiveness in the link prediction task.

Table 6 shows the results of inductive link prediction on AMiner.
Even though 50% nodes are hidden in networks, AHNG accomplishes
a good AUC and AP values. In other words, AHNG is compatible with
those nodes that does not participate in the whole embedding process.
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40 60 80 100
walk length len
(b) ARI & NMI w.r.t len
Table 6

Inductive link prediction on AMiner.

Metric  Hiding ratio €

10% 25% 50%
AUC 0.9395  0.9236  0.9096
AP 0.9188  0.9041  0.8983

In general, the involvement of a new node requires the retraining of
neural network based models, leading to enormous space and time costs.
Fortunately, by incorporating abundant node attributes, AHNG shows
inductiveness. The inductiveness of AHNG facilitates us to embed new
nodes, which results in the brilliance of AHNG comparing with existing
heterogeneous network embedding methods.

5. Conclusion

Most existing network embedding methods are designed for homoge-
neous networks and ignore the diverse nodes attributes. However, many
real-world networks are naturally heterogeneous and are affiliated with
abundant attributes. The manifold heterogeneous information includ-
ing structured and unstructured information throws out a challenge on
seamlessly fusing these information and constrains the applicability of
conventional network embedding methods in jeopardy. Furthermore,
the rich variety of node attributes leads to the uncertain representa-
tions of nodes. Taking the above problems into account, we study the
problem of node embedding on attributed heterogeneous networks and
propose a novel method AHNG in this paper. AHNG encodes the hetero-
geneous information with a neural network. Different from most tradi-
tional methods which represent nodes as vectors, AHNG embeds nodes
with Gaussian distributions to capture the uncertainty of node repre-
sentations. The collaboration of node attributes advances the skip-gram
based methods and enables AHNG inductive. We conduct several clas-
sic experimental evaluations on the real-world datasets, and the results
demonstrate that AHNG not only can embed nodes more accurately but
also is much more computationally efficient than its competitors.
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