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Large-Scale Robust Semisupervised Classification
Lingling Zhang , Minnan Luo, Zhihui Li , Feiping Nie, Huaxiang Zhang, Jun Liu, and Qinghua Zheng

Abstract—Semisupervised learning aims to leverage both
labeled and unlabeled data to improve performance, where most
of them are graph-based methods. However, the graph-based
semisupervised methods are not capable for large-scale data since
the computational consumption on the construction of graph
Laplacian matrix is huge. On the other hand, the substantial
unlabeled data in training stage of semisupervised learning could
cause large uncertainties and potential threats. Therefore, it is
crucial to enhance the robustness of semisupervised classification.
In this paper, a novel large-scale robust semisupervised learn-
ing method is proposed in the framework of capped �2,p-norm.
This strategy is superior not only in computational cost because
it makes the graph Laplacian matrix unnecessary, but also in
robustness to outliers since the capped �2,p-norm used for loss
measurement. An efficient optimization algorithm is exploited to
solve the nonconvex and nonsmooth challenging problem. The
complexity of the proposed algorithm is analyzed and discussed
in theory detailedly. Finally, extensive experiments are conducted
over six benchmark data sets to demonstrate the effectiveness and
superiority of the proposed method.

Index Terms—Classification, ridge regression, robustness,
semisupervised learning.

I. INTRODUCTION

MORE and more data emerges along with the develop-
ment of Internet, where the labeled data is extremely

deficient. For many practical applications, supervised learn-
ing requires some data annotation work beforehand, which is
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tedious and time-consuming [1]–[3]. The quality of data anno-
tation also seriously affects the algorithm performance. Note
that the acquisition of unlabeled data is relatively inexpensive.
Therefore, how to effectively utilize the unlabeled data to mine
the available information is crucial [4]–[6].

Semisupervised learning is a considerable learning
paradigm, which learns from both labeled and unlabeled data
to improve the performance [7]–[11]. Typically, semisuper-
vised learning can be categorized into transductive learning
and inductive learning according to the statistical learning
theory. Transductive learning is to infer the correct labels
of unlabeled samples by spreading the labels from labeled
data to unlabeled data. The local and global consistency
(LGC) [12] and Gaussian fields and harmonic functions
(GFHF) [13] are typical transductive learning approaches.
The key of LGC is to let every point iteratively propagate its
label information to its neighbors until a stable global state
is achieved. GFHF solves the same problem as LGC based
on a Gaussian random field model. Zhou and Schölkopf [14]
further investigated the transductive algorithm using random
walks (RWs) and spectral graph theory. Note that LGC,
GFHF, and RW all use the quadratic form of graph embed-
ding. In [15], a novel transductive method unsupervised
and semisupervised learning via �1-norm graph (L1-SEMI)
is proposed to achieve robustness over the noisy samples
via �1-norm of spectral embedding. The drawback of
transductive learning is that it could not predict the labels
of samples which are not involved in the procedure of
training.

Instead, inductive learning can predict not only the labels
of unlabeled data using for training but also the labels of
testing samples by mapping sample representations to the
corresponding labels [16], [17]. This is the reason why induc-
tive learning is more attractive and practical than transductive
learning. In the past decades, many inductive learning methods
were developed for classification. For example, the meth-
ods Laplacian regularized least squares [18] and Laplacian
support vector machines (SVMs) are rooted in a general
framework for semisupervised learning called manifold reg-
ularization [19], [20]. Nie et al. [21] combined a flexible
penalty term to cope better with the samples which reside
on the nonlinear manifold, namely flexible manifold embed-
ding (FME). In [22], a new semisupervised elastic embedding
method (AEE) with a novel adaptive loss is proposed to
achieve robustness to the outliers. Note that these methods
are based on graph-based learning which provides an efficient
approach for incorporating the relationship among labeled
and unlabeled data [23], [24]. However, the construction of
graph Laplacian matrix requires tremendous computational
cost, particularly for large-scale data.

2168-2267 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8136-8795
https://orcid.org/0000-0001-9642-8009


908 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 3, MARCH 2019

Although semisupervised learning could combine labeled
and unlabeled data information to surpass the classification
performance intuitively, substantial unlabeled data in train-
ing stage could cause large uncertainties and potential threats.
Many outliers hiding in unlabeled data may distort the clas-
sifier learned only from labeled data. Therefore, guaranteeing
the robustness to outliers is crucial for semisupervised classi-
fication performance. To address this issue, Wang et al. [25]
performed the large-scale adaptive semisupervised learning
(ASL) method based on ridge regression, where ridge regres-
sion [26] is generally used to solve the classification problem
and achieve excellent performance in supervised learning.
ASL adaptively suppresses the weights of boundary points to
achieve better robustness to outliers. However, this method
introduces an additional probability of label for each instance,
which increase the model’s computation.

Specially, Jiang et al. [27] proposed a novel dictionary
learning method which uses capped �1-norm [28] as a robust
loss function. This model achieves an excellent property of
robustness to outliers and outperforms other dictionary learn-
ing methods. We propose a novel semisupervised classification
method based on ridge regression in this paper. On the one
hand, the method in this paper is superior in computational
cost because it makes the similarity matrix unnecessary. On the
other hand, inspired by the effectiveness of capped �1-norm,
we leverage a novel loss function based on capped �2,p-norm
to enhance the model’s robustness. Note that the capped �2,p-
norm is indeed an extensive version of capped �1-norm, i.e.,
the capped �2,p-norm becomes traditional capped �1-norm if
p = 1. Undoubtedly, the loss function based on capped �2,p-
norm could get better robustness than capped �1-norm by
setting the appropriate value of p. Extensive numeric experi-
ments demonstrate that our method significantly outperforms
other semisupervised methods on six benchmark data sets, par-
ticularly in large-scale data applications. The contributions of
this paper are summarized as follows.

1) A novel large-scale semisupervised classification method
is presented on the basis of ridge regression, which
does not require to construct the graph Laplacian matrix.
Therefore, the proposed method is of significant in big
data applications.

2) Instead of using the �2-norm or �2,p-norm, we employ
the capped �2,p-norm-based loss function to achieve the
model’s robustness and accuracy for classification.

3) An efficient alternative algorithm is exploited to solve
the proposed nonconvex and nonsmooth optimization
problem. The computational complexity of the algorithm
is analyzed detailedly in theory.

II. ROBUST SEMISUPERVISED LEARNING

In this section, we exploit a novel large-scale semisuper-
vised learning method in the framework of ridge regression,
which utilizes the capped �2,p-norm to enhance the model’s
robustness to outliers. We denote the training set by X =
{x1, x2, . . . , xn}, where n is the total number of data points and
xi = [xi1, xi2, . . . , xid]� ∈ R

d refers to a d-dimensional fea-
ture of the ith data point. In the framework of semisupervised

(a) (b) (c)

Fig. 1. Squared �2-norm loss versus �2,p-norm loss versus capped �2,p-
norm loss. (a) Squared �2-norm loss. (b) �2,p-norm loss (p = 1). (c) Capped
�2,p-norm loss (p = 1, ε = 1).

case, the feature matrix of training data points is represented
by X = [x1, x2, . . . , xn] ∈ R

d×n, where the first m (m < n)

data point x1, x2, . . . , xm are labeled and the remain ones, i.e.,
xm+1, xm+2, . . . , xn, are unlabeled data points whose labels are
not given. Let yi = [yi1, yi2, . . . , yic]� ∈ R

c be the label vec-
tor of the ith labeled data point for i = 1, 2, . . . , m, where c
refers to the number of semantic categories and yij = 1 when
xi is in the jth class whereas yij = 0 otherwise. In addition,
the label matrix

Y =
⎡
⎢⎣y1, y2, . . . , ym︸ ︷︷ ︸

Yl∈Rm×c

, ym+1, . . . , yn︸ ︷︷ ︸
Yu∈R(n−m)×c

⎤
⎥⎦

�

∈ Ind (1)

means Y ∈ R
n×c is an indicator matrix used for label assign-

ment over the entire training data points. In particular, Yl ∈ Ind
is given for m labeled data points; Yu ∈ Ind refers to the
predicted label matrix for (n − m) unlabeled data points.

Squared �2-norm ‖ · ‖2
2 is usually leveraged in ridge regres-

sion to compute the loss over entire data points. It is simple
but not robust to the large losses which are typically intro-
duced by outliers, especially when the class number of the data
points is large [22]. However, substantial unlabeled data during
semisupervised learning stage could cause large uncertainties
and potential threats. It leads the learned classifier maybe dis-
torted far way from the ground truth if these outlier data points
dominated the loss function [25]. Therefore, it is necessary to
develop a method that is robust to the outliers.

Instead of using �2-norm-based loss measurement, �2,p-
norm ‖ · ‖p

2 is typically exploited to achieve the joint sparsity
by making p falls inside the range of (0, 2]. This strategy also
enhances the model’s robustness to outliers [29]–[31]. For a
better representation, we illustrate the squared �2-norm and
�2,p-norm in Fig. 1(a) and (b). It is evident that �2,p-norm is
much more capable to tolerate the bias caused by outliers than
traditional squared �2-norm. As a result, �2,p-norm achieves
more robustness by selecting 0 < p ≤ 2.

To further improve the robustness, we first define a novel
norm of a matrix as follows, namely capped �2,p-norm.

Definition 1: For any matrix A = (aij) ∈ R
n×m and

parameter 0 < p ≤ 2, its capped �2,p-norm is defined as

g(A) =
n∑

i=1

min
(‖Ai‖p

2, ε
)

(2)

with thresholding parameter ε ≥ 0.
As illustrated in Fig. 1(c), the loss value of capped �2,p-

norm, i.e., min(‖y′
i −yi‖p

2, ε) does not increase anymore when
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‖y′
i − yi‖p

2 is large than ε. Therefore, the capped �2,p-norm
can further suppress the bias when the outliers are far away
from the normal data distribution. Taking the robustness of
capped �2,p-norm into consideration, we propose a novel
robust semisupervised classification model formalized as the
following optimization problem:

min
W,b,Yu∈Ind

n∑
i=1

min
(
‖W�xi + b − yi‖p

2, ε
)

+ λ‖W‖2
F (3)

where W = [w1, w2, . . . , wc] ∈ R
d×c is the classifier matrix

whose column wi refers to the classifier with respect to
the ith integrate. c-dimensional vector b refers to the bias
term. Note that W and b correlate each data point xi with
its labels yi for i = 1, 2, . . . , n. Specifically, the first term∑n

i=1 min(‖W�xi + b − yi‖p
2, ε) in objective function (3)

describes the loss value based on the capped l2,p-norm. The
second term λ‖W‖2

F is included to penalize nonzero weights
with the cost proportional to a shrinkage coefficient λ. It is
evident that the first term turns to �2,p-norm-based loss mea-
surement when the parameter ε is set as ∞. Indeed, the
proposed problem (3) is a more general extension of ridge
regression. It is equivalent to the traditional ridge regression
when parameters p and ε are set as 2 and ∞, respectively.

III. OPTIMIZATION ALGORITHM

Note that the proposed objective function is indeed the sum
of a concave function and a convex function. This nonconvex
and nonsmooth optimization problem (3) with respect to vari-
ables W, b and Yu is challenging for optimization. In order to
address this problem, we first introduce the following theorem
on concave duality in [32].

Theorem 1 [32]: Let g : R
d → R be a nonconvex function

and h : R
d → � ⊂ R

d be a map with range �. If there exists
a concave function ḡ(u) defined on � such that g(z) = ḡ(h(z))
holds, the nonconvex function g can be rewritten according to
concave duality [33] as

g(z) = inf
v∈Rd

[
v�h(z) − g∗(v)

]
(4)

where g∗(v) is the concave dual of ḡ(u) defined as

g∗(v) = inf
u∈�

[
v�u − ḡ(u)

]
. (5)

Specifically, the minimum of the right-hand side of (4),
denoted by v∗, is achieved at

v∗ = ∂ ḡ(u)

∂u
|u=h(z). (6)

According to Theorem 1, we define a concave function
ḡ : R → R such that ∀z > 0

ḡ(z) = min
(√

zp, ε
)
. (7)

Let h(ω) = ω2, then the capped l2, lp-norm loss measurement
could be reformulated as

min
(
‖W�xi + b − yi‖p

2, ε
)

= ḡ(h(ω)) (8)

where ω = ‖W�xi + b − yi‖2. As a result, we obtain the
following theorem.

Theorem 2: The objective function of optimization prob-
lem (3) can be rewritten as

min
W,b,Yu,vii≥0(∀i)

n∑
i=1

Li(vii, W, b; ε) + λ‖W‖2
F (9)

where

Li(W, b, Yu, vii; ε) =
⎧⎨
⎩

viiz − vii

(
2
p vii

) 2
p−2 +

(
2
p vii

) p
p−2

, z
p
2 < ε

viiz − viiε
2
p + ε, z

p
2 ≥ ε

and z = ‖W�xi + b − yi‖2
2.

Proof: According to Theorem 1, the �2,p-norm loss mea-
surement in objective function (3) can be reformulated as

min
(
‖W�xi + b − yi‖p

2, ε
)

= ḡ
(
‖W�xi + b − yi‖2

2

)

= inf
vii≥0

viih(ω) − g∗(vii) = inf
vii≥0

viiz − g∗(vii) (10)

where z = h(ω) = ‖W�xi + b − yi‖2
2. The concave dual of

ḡ(z), denoted by g∗(vii) is defined as

g∗(vii) = inf
z

[
viiz − ḡ(z)

]

= inf
z

{
viiz − √

zp, z
p
2 < ε

viiz − ε, z
p
2 ≥ ε.

(11)

By optimizing z for problem (11), it turns that

g∗(vii) =
⎧⎨
⎩

vii

(
2
p vii

) 2
p−2 −

(
2
p vii

) p
p−2

, z
p
2 < ε

viiε
2
p − ε, z

p
2 ≥ ε.

(12)

As a result, the �2,p-norm loss measurement in objective
function (3) could be expressed as

min
(
‖W�xi + b − yi‖p

2, ε
)

= inf
vii≥0

Li(W, b, Yu, vii; ε) (13)

with

Li(W, b, Yu, vii; ε)

=
⎧⎨
⎩

viiz − vii

(
2
p vii

) 2
p−2 +

(
2
p vii

) p
p−2

, z
p
2 < ε

viiz − viiε
2
p + ε, z

p
2 ≥ ε.

(14)

Therefore, the objective function (3) can be reformulated as

min
W,b,Yu

n∑
i=1

min
(
‖W�xi + b − yi‖p

2, ε
)

+ λ‖W‖2
F

⇐⇒ min
W,b,Yu

n∑
i=1

inf
vii≥0

Li(W, b, Yu, vii; ε) + λ‖W‖2
F

⇐⇒ min
W,b,Yu,vii≥0,∀i

n∑
i=1

Li(W, b, Yu, vii; ε) + λ‖W‖2
F. (15)

The proof is completed.
Based on Theorem 2, the optimal classier related parame-

ters W and b, and the predicted label matrix for unlabeled
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data points Yu can be learned via addressing optimization
problem (9) through an alternative optimization algorithm.

A. Optimizing Yu

When the classifier related parameters W and b and weight-
ing parameter vii are fixed for i = 1, 2, . . . , n, the label matrix
Yu of unlabeled data points can be predicted via solving the
following optimization problem:

Yu = arg min
Yu∈Ind

‖X�
u W + 1b� − Yu‖2

F (16)

where 1 denotes the vector whose elements are all one. Since
the rows of indicator matrix Yu are independent from each
other, we update one row each time while keeping the other
rows fixed. To be more specific, the updating of one row is
conducted by finding the element being 1 that results in the
minimum of the optimization problem

min
yi∈Ind

‖W�xi + b − yi‖2
2 (17)

for i = m + 1, m + 2, . . . , n. Let y′
i = W�xi + b, we have

‖y′
i − yi‖2

2 =
c∑

j=1

(
y′

ij − yij
)2

=
c∑

j=1

y′2
ij − 2

c∑
j=1

y′
ijyij +

c∑
j=1

y2
ij.

Because only one element of yi ∈ Ind is 1, we arrive at∑c
j=1 y2

ij = 1. Therefore the value of function (18) only lies on∑c
j=1 y′

ijyij. It is evident that the optimization problem (17)
arrives at its minimum value when xi is in the k0th class where
k0 = arg maxj yij.

B. Optimizing vii

We formulate the gradient of function ḡ(z) with respect to
z as

∂ ḡ(z)

∂z
=

{
p
2 z

p
2 −1, if 0 < z < ε

2
p

0, z
p
2 ≥ ε.

(18)

According to (6) in Theorem 1, when z = h(ω) = ‖W�xi +
b − yi‖2

2 with fixed values of W, b, and Yu, we have

vii = ∂ ḡ(z)

∂z
|z=‖W�xi+b−yi‖2

2

=
{ p

2‖W�xi + b − yi‖p−2
2 , if 0 < ‖W�xi + b − yi‖p

2 < ε

0, otherwise
(19)

for i = 1, 2, . . . , n. Note that parameter vii (i = 1, 2, . . . , n)
indeed provides a weight for the ith instance among both
labeled and unlabeled data points. Specifically, if the loss
brought by ith data point is larger than the predefined thresh-
old, we remove this data point and avoid it.

C. Optimizing W and b

When the variables vii (i = 1, 2, . . . , n) are fixed, the
optimization problem (9) for variables W and b becomes

{W, b} = arg min
n∑

i=1

vii‖W�xi + b − yi‖2
2 + λ‖W‖2

F. (20)

Let V = diag(v11, v22, . . . , vnn) be a n × n diagonal matrix,
then the optimization problem (20) can be reformulated as

φ(W, b) = Tr

((
X�W + 1b� − Y

)�
V

(
X�W + 1b� − Y

))

+ λ‖W‖2
F (21)

where Tr(·) stands for the trace of matrix. With the equivalent
objective φ(W, b) for optimization problem (20), the optimal
solution can be solved easily since φ is jointly convex with
respect to W and b. Setting the derivative of objective function
φ with respect to b to 0, we have

∂φ(W, b)

∂b
= 21�V

(
X�W + 1b� − Y

)
= 0. (22)

Then, we obtain

b = 1

1�V1
Y�V1 − 1

1�V1
W�XV1. (23)

After that, we set the derivative of φ with respect to W to 0,
we arrive at

∂φ(W, b)

∂W
= 2XV

(
X�W + 1b� − Y

)
+ 2λW = 0. (24)

By substituting (23) into (24), we get

XVHX�W + λW = XVHY (25)

where H = I − [(11�V)/(1�V1)] ∈ R
n×n denotes a centering

matrix. Let A = XVHX�+λI ∈ R
d×d and B = XVHY ∈ R

d×c,
we obtain

W = A−1B. (26)

There, the optimization problem (20) for minimal estimation of
W and b can be addressed via updating b and W alternatively
according to (23) and (26).

In a summary, we describe the alternative optimization
algorithm in Algorithm 1 to solve the proposed challenging
semisupervised classification method. We specially initialize
the classifier related parameters W0, b0 with all of the labeled
data by addressing the following optimization problem:

(W0, b0) = arg min
W,b

‖X�
l W + 1b� − Yl‖2

F + λ‖W‖2
F. (27)

It is evident that the objective function (27) is jointly convex
with respect to variables W and b. We set the derivatives of
the function (27) equal to zero with respect to b and obtain

b0 = 1

l

(
Y�

l 1 − W�Xl1
)
. (28)

By substituting (28) into (27) and setting its derivative with
respect to W equal to zero, we arrive at

W0 =
(

XlHX� + λI
)−1

XHYl (29)
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Algorithm 1 Large-Scale Robust Semisupervised Classification
Input: Labeled data matrix Xl with label matrix Yl, unlabeled data matrix Xu, number of classes c, regularization parameter

λ and γ .
Output: Predicted label Yu.
Initialize: {W0, b0} = arg minW,b ‖X�

l W + 1b� − Yl‖2
F + λ‖W‖2

F and set initial t = 0.
1: while not converge do
2: Update each row of Yu by solving yt+1

i = arg miny∈Ind ‖W�xi + bt − y‖2
2 (i = l + 1, l + 2, · · · , n) while fixing the

remaining rows;
3: Update the diagonal matrix Vt+1 = diag(vt+1

11 , vt+1
22 , · · · , vt+1

nn ) with

vt+1
ii =

{
p
2‖W�

t xi + bt − yi‖p−2
2 , ‖W�

t xi + bt − yi‖p
2 ≤ ε;

0, otherwise.
(i = 1, 2, · · · , n)

4: Update {Wt+1, bt+1} = arg minW,b Tr
(
(X�W + 1b� − Yt+1)�Vt+1(X�W + 1b� − Yt+1)

) + λ‖W‖2
F .

5: end while

where H = I − (1/l)11�. As a result, closed-form initial solu-
tions W and b are gained over the labeled data points. Because
only a small number of data points are usually labeled in
the framework of semisupervised learning, the procedure of
initialization will not cost too much computation.

D. Discussion

We briefly discuss the computational complexity of the pro-
posed algorithm. During the training, the major computational
cost lies in the updating of classifier related parameters W, i.e.,
W = A−1B with the most computational cost O(d3), where
the d ×d matrix C and d × c matrix B is calculated with com-
putational cost O(nd2) and O(ndc), respectively. Indeed, the
d × d matrix inverse computation can be avoided by updating
W via solving the following problem:

Wt+1 = arg min
W

A�‖W‖2
F − 2B�W. (30)

In this case, W can be updated iteratively using gradient
descent method as Wt+1 = Wt − α(AWt − B) with a com-
putational cost of O(Td2c), where T refers to the number of
iterations. As a result, the total computational cost of the pro-
posed algorithm is upper bounded by O(Td2c) + O(nd2) +
O(ndc). Because in practice the number of categories c is
always much smaller than the instance dimensionality d and
the number of data points n, the total computational cost can
also written as O(Td2) + O(nd2). It indicates that the com-
putational cost of our algorithm is linear with respect to the
number of data points n, and therefore our algorithm is able
to scale to large-scale data. The scalability maybe restricted
when the number of features d is so large. In this case, we
can decrease the dimension d using some dimension reduction
methods.

Compared with graph-based methods, our proposed algo-
rithm need not consume additional time on establishing the
Laplacian matrix with computational cost O(n2) or O(nk),
where k is the sparsity of graph Laplacian matrix.

IV. EXPERIMENT

A. Experimental Setup

We perform the experiments over six data sets. The
JAFFE [34] contains 213 facial expression images from ten

classes. The USPS [35] includes 9298 handwritten digit
images, which has ten categories representing digits from 0
to 9. The MSRA50 [36] contains 1799 face images from 12
different classes. The YaleB [37] consists of 2414 face images
from 38 individuals captured under the various lighting con-
ditions. The face database CMU-PIE [38] is collected from
68 individuals with varying expressions, which includes 3329
images. The PALM [39] contains 2000 hand images of 100
individuals. For all data sets, we directly use pixel values to
represent the images. Thus the image feature dimensions are
576, 256, 1024, 1024, 1024, and 576, respectively in these six
data sets.

We compare our method with the following six classifi-
cation algorithms, where the adaptive boosting (AdaBoost)
and SVM are the common valid supervised classifiers and
the others are designed for semisupervised learning. Note that
the semisupervised classifiers contain the transductive learn-
ing methods (GFHF and L1-SEMI) and the inductive learning
methods (FME and ASL).

1) AdaBoost [40]: It improves the classification perfor-
mance by constructing a “strong” classifier as the linear
combination of “weak” classifiers.

2) SVM [41]: It is a supervised model for classification
and regression, which constructs a hyperplane in a high-
dimensional space to achieve a good separation of data
samples.

3) GFHF [13]: It is a representative graph-based semisu-
pervised learning method. The method formulates the
learning problem in terms of Gaussian random field on
Laplacian graph.

4) L1-SEMI [15]: Different from minimizing a �2-norm
in traditional graph-based learning methods, L1-SEMI
exploits sparsity by minimizing the �1-norm to improve
robustness.

5) FME [21]: It is a unified manifold embedding frame-
work for semisupervised learning. It combines a flexible
penalty term to cope better with the samples which
reside on the nonlinear manifold.

6) ASL [25]: It achieves robustness by suppressing the
weights of boundary points adaptively. ASL is scalable
to large-scale data because it need not establish the graph
Laplacian matrix.
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TABLE I
PERFORMANCE COMPARISON ON JAFFE (ACCURACY ± STD) WITH RESPECT TO 10%, 20%, 40%, AND 80% LABELED TRAINING DATA

TABLE II
PERFORMANCE COMPARISON ON USPS (ACCURACY ± STD) WITH RESPECT TO 10%, 20%, 40%, AND 80% LABELED TRAINING DATA

TABLE III
PERFORMANCE COMPARISON ON MSRA50 (ACCURACY ± STD) WITH RESPECT TO 10%, 20%, 40%, AND 80% LABELED TRAINING DATA

B. Performance Comparison

In the experiments, we randomly choose 2/3 of data over
each data set as the training samples. The remaining sam-
ples are served as the corresponding testing data. To study the
performance of proposed method over different radios labeled
data among the training samples, we assign the value of radio
as 10%, 20%, 40%, and 80%, respectively.

For a fair comparison, we record the classification results
of all methods using the best tuned. The parameters of
our method, including the thresholding parameter ε, regu-
larization parameter λ and p (0 < p ≤ 2), are tuned in
[0.6:0.2:1.4], {10−5, 10−4, . . . , 10−1} and [0.1:0.1:2], respec-
tively. The transductive semisupervised methods GFHF and
L1-SEMI are parameter-free. The inductive method FME
has two regularization parameters, which are tuned in
{10−5, 10−4, . . . , 104, 105}. For ASL, it has only one adap-
tive parameter, which is tuned from 1 to 2 with a stepsize of

0.1. Under the condition mentioned above, we repeat every
method 30 times to compute the average classification accu-
racy and standard deviation (STD) to evaluate the performance
of methods.

We report the experimental results over six data sets
from Tables I–VI, where the column “unlabeled” shows the
classification results over unlabeled samples among the sam-
pled training data. Similarly, the column “testing” shows
the results over testing samples. For transductive semisu-
pervised methods, the learned classifiers cannot be used to
predict the out-of-sample testing data. We use the sym-
bol “NA” to represent the meaning. By comparing the
performance of different methods, we have the following
observations.

1) Our method consistently performs better over all data
sets than other semisupervised and the supervised meth-
ods. The reason is that the capped �2,p-norm used for
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TABLE IV
PERFORMANCE COMPARISON ON YALEB (ACCURACY ± STD) WITH RESPECT TO 10%, 20%, 40%, AND 80% LABELED TRAINING DATA

TABLE V
PERFORMANCE COMPARISON ON CMU-PIE (ACCURACY ± STD) WITH RESPECT TO 10%, 20%, 40%, AND 80% LABELED TRAINING DATA

TABLE VI
PERFORMANCE COMPARISON ON PALM (ACCURACY ± STD) WITH RESPECT TO 10%, 20%, 40%, AND 80% LABELED TRAINING DATA

loss measurement is capable to effectively improve the
robustness by lowering the influence of outliers.

2) In generally, semisupervised methods perform better
than supervised methods, especially when the labeled
samples among training points are fewer. This is because
semisupervised methods can effectively utilize the unla-
beled samples information during the training stage.

3) In most case, the inductive semisupervised methods out-
perform the transductive methods. In particular, the ASL
and our model dramatically perform better than trans-
ductive approaches because they suppress the weights
of boundary points to improve the robustness.

4) The supervised method SVM significantly performs bet-
ter than AdaBoost, particularly over the data sets YaleB,
CMU-PIE, and PALM. It demonstrates that the SVM has
better stability than AdaBoost over the data sets with
high-dimensional descriptors and large categories.

(a) (b)

Fig. 2. Demonstration on synthetic data. (a) Original synthetic data.
(b) Synthetic data after classification.

5) The performance of each method becomes better as
the ratio of labeled training samples increasing. More
labeled data are helpful to improve the performance of
both supervised and semisupervised learning.
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(a) (b) (c) (d)

Fig. 3. Classification accuracies over 20% labeled training data for four face recognition data sets. (a) JAFFE. (b) MSRA50. (c) YaleB. (d) CMU-PIE.

(a) (b) (c) (d) (e) (f)

Fig. 4. Time performance analysis over 20% labeled training data for all data sets with different times. (a) JAFFE. (b) USPS. (c) MSRA50. (d) YaleB.
(e) CMU-PIE. (f) PALM.

C. Robustness Analysis

To study the property of robustness to outliers, we carried
out experiments over a synthetic data set [25] and four real
face data sets with artificial block occlusion [27].

1) Demonstration on Synthetic Data With Boundary
Outliers: In the experiment, original data is generated as
Fig. 2(a). Specifically, we sample 60 data points for first class
from a Gaussian distribution with a mean of −15, and an STD
4. Similarly, 60 data points for second class are sampled with
a mean of 15, and an STD 4. We sample ten outliers around
decision boundary with a mean of 0. In addition, we add ten
outliers far away the decision boundary with a mean of 30.
Three points for each class are sampled randomly as labeled
data (i.e., the blue circle boxes in the left and right). Fig. 2(b)
shows the classification result using our robust semisupervised
model, where the blue line is the learned decision boundary. It
is evident that our model learns the correct classifier in spite of
the disturbance from some outliers far away from the normal
data distribution.

2) Demonstration on Real Data With Block Occlusion:
We provide some experimental results on classification task
with synthetic occlusion over four face data sets includ-
ing JAFFE, MSRA50, YaleB, and CMU-PIE. We set the
labeled radio as 20% and then we add block occlusion
into training set, where the side of block occlusion is 1/3
original image size. We set the percentage of images with
block occlusion (outlier radio) as 10%, 20%, 30%, and
40%, respectively. Fig. 3 shows the classification results
of all semisupervised methods over the four face data
sets with synthetic outliers. The observation indicates the
following.

1) The classification performance of all methods decreases
with the increase of outlier radio, which is caused by
the existence of block occlusion.

2) The accuracy of our method and ASL drops slowly in
contrast to GFHF, L1-SEMI, and FME, in particularly

our method performs slightly better than ASL model
over all data sets.

D. Scalability Analysis

To verity the time superiority of the proposed method, we
design experiments over six benchmark data sets which are
copied to 2, 4, 8, and 16 times of the original data sets,
respectively. The experiment run on a computer with 16 ×
2.8-GHz cores and 128-GB memory. Considering that some
methods including L1-SEMI, ASL, and our method utilize the
alternative optimization algorithms to solve the classification
problems, the time consumptions of them are decided by the
equal convergence residual for fair comparison.

Fig. 4 shows the time performance of all methods over
20% labeled training data for six extended data sets. We can
conclude as follows.

1) The total computing time of all methods increases with
the times of data sets boosting.

2) ASL and the proposed method consume less time than
other graph-based semisupervised methods, especially
when the number of data is larger, which is because our
proposed method and ASL need not consume additional
time on constructing the Laplacian matrix.

3) Compared to our method, ASL consumes more time
because it introduces an additional probability dis-
tribution of label for each data point in the proce-
dure of ASL’s optimization. In summary, the proposed
method achieves a better scalability on large-scale data
applications.

E. Sensitivity Analysis

There are three parameters in the proposed method, such as
the thresholding parameter ε, regularization parameter λ, and
p (0 < p ≤ 2). In this section, we analysis the influence of
varying parameters on the performance of classification.
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(a) (b) (c) (d) (e) (f)

Fig. 5. Sensitivity analysis on parameter p with λ = 0.1 and ε = 0.8 over 20% labeled training data for all data sets. (a) JAFFE. (b) USPS. (c) MSRA50.
(d) YaleB. (e) CMU-PIE. (f) PALM.

(a) (b) (c) (d) (e) (f)

Fig. 6. Sensitivity analysis on regularization parameter λ and ε with p = 1 over 20% labeled training data for all data sets. (a) JAFFE. (b) USPS. (c) MSRA50.
(d) YaleB. (e) CMU-PIE. (f) PALM.

In the condition of parameter ε = 0.1 and λ = 0.8, we
study the influence of parameter p over 20% labeled train-
ing data. There, we plot the sensitivity performance curves as
the increase of p in Fig. 5. It indicates that the classification
accuracy increases with the increase of p. After reaching its
maximum, the performance decreases gradually. The results
demonstrate that a proper p could achieve the best robustness
by reducing the effect of outliers through sparsity. In addition,
the best parameter p is distinguishing over different data sets
because of the diverse properties related to the data sets.

We also evaluate the impacts of parameters ε and λ on the
performance by assigning ε and λ vary from 0.6 to 1.4 and
10−5 to 10−1, respectively. With p = 1, Fig. 6 shows the
sensitivity analysis result on regularization parameters λ and
ε over 20% labeled training data. We achieve at the following
conclusions.

1) Our method has strong robustness since the parameters
λ and ε can achieve well classification performance on
a large scale in all data sets.

2) The selection of best parameters is closely related to
the property of data sets. In other words, the opti-
mal parameters selected over different data sets are
distinguishable.

According to the mentioned above, the classification per-
formance of the proposed method is fluctuant with varying
values of parameters p, ε, and λ. When the parameter p
in interval [1.2, 1.4], ε in [0.8, 1.4] and λ in [10−1, 10−4],
the classification accuracy could be satisfactory and relatively
stable.

V. CONCLUSION

This paper proposes a novel method for semisupervised
classification. Compared with other graph-based methods,
our method need not construct the Laplacian matrix. As a
result, our method shows superiority in computational cost
for large-scale data applications. Moreover, based on the

proposed �2,p-norm, this method show better robustness to the
outliers. An efficient alternative optimization algorithm is pro-
posed to solve the challenging problem. We also analyze the
computational complexity of the proposed algorithm in the
theory.
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