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Abstract—Active learning aims to reduce manual labeling
efforts by proactively selecting the most informative unlabeled
instances to query. In real-world scenarios, it’s often more
practical to query a batch of instances rather than a single
one at each iteration. To achieve this we need to keep not
only the informativeness of the instances but also their diversity.
Many heuristic methods have been proposed to tackle batch
mode active learning problems, however, they suffer from two
limitations which if addressed would significantly improve the
query strategy. Firstly, the similarity amongst instances is simply
calculated using the feature vectors rather than being jointly
learned with the classification model. This weakens the accuracy
of the diversity measurement. Secondly, these methods usually
exploit the decision boundary by querying the data points close
to it. However, this can be inefficient when the labeled set is too
small to reveal the true boundary. In this paper, we address both
limitations by proposing a deep neural network based algorithm.
In the training phase, a pairwise deep network is not only
trained to perform classification, but also to project data points
into another space, where the similarity can be more precisely
measured. In the query selection phase, the learner selects a
set of instances that are maximally uncertain and minimally
redundant (exploitation), as well as are most diverse from the
labeled instances (exploration). We evaluate the effectiveness
of the proposed method on a variety of classification tasks:
MNIST classification, opinion polarity detection and heart failure
prediction. Our method outperforms the baselines with both
higher classification accuracy and faster convergence rate.

I. INTRODUCTION

Due to the limited availability of training data and expensive

human labeling cost, various active learning algorithms have

been proposed to select the most informative instances from

the large pool of unlabeled data. Typical active learning

algorithms selected a single instance to query at each time,

and then ask humans for its label. This process repeats

until the learner approximately achieves the target learning

accuracy or the labeling budget is reached. The key to active

learning is the query strategy, whose goal is to select the most

useful examples which if labeled would significantly boost the

learning accuracy. Variety types of active learning methods

have been proposed, such as uncertainty sampling, query by

committee, and expected error reduction.

In conventional active learning, the learning model is trained

too frequently with little change in the training data. This

is very inefficient and would cause serious overfitting if the

model is deep neural network based. To address this issue,

batch mode active learning (BMAL) algorithms were proposed

to select a group of instances at each iteration. In many existing

BMAL methods, it’s possible that a group of informative but

similar instances are selected at the same time. If this is the

case, it would waste the labeling effort as similar instances

provide the learning model essentially the same piece of

information. Therefore, besides the informativeness, diversity

is the key consideration in batch mode active learning. A set of

heuristic algorithms have been proposed for BMAL to choose

a set of informative and diverse instances. The cluster-based

algorithms [1] [2] [3] [4] firstly group the unlabeled instances

based on their similarity, and then select instances in different

groups to reduce the redundancy in the query set. By defining

a redundancy function based on the similarity in the projected

kernel space, the SVMactive algorithms [5] [6] [2] [7] [8]

select a batch of informative and diverse instances at each

time. Hoi [9] proposes to choose a set of instances which

have the minimum Fisher information.

However, existing BMAL algorithms mainly suffers from

two limitations. (i) The performances of previous BMAL al-

gorithms heavily rely on the accuracy of the similarity measure

between instances. The algorithms map each instance into a

feature space, for example the kernel space in SVMactive,

and then the similarity is simply calculated based on some

predefined function. The similarity amongst instances is sim-

ply calculated using the feature vectors rather than jointly

learned with classification models. This weakens the accuracy

of the diversity measurement. (ii) Existing BMAL algorithms

are only good at “exploitation”. The learners always query

the instances closed to the decision boundary of the current

hypothesis. At the early stage, it’s probable that the number of

labeled instances is too small to cover the true data distribution

in the feature space. Therefore, it is also important to perform

“exploration”, so that the learning model would search for new

regions where a large pocket of instances may be misclassified.

For example, Osugi [10] cites an exclusive OR problem in

Figure 1. If all the labeled data are from regions 1, 2, 3, all

the data in region 4 will be misclassified. In this case, the

misclassified instances are away from the decision boundary
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Fig. 1. An example of exclusive OR problem. We denote the upper-left,
upper-right, lower-left, lower-right by 1, 2, 3, 4. Region 2 and 3 are positives
and region 1 and 4 are negtives.

based on the current hypothesis, and will never be queried.

We present a novel BMAL approach that explicitly learns

the similarity using deep neural network, and balances explo-

ration and exploitation based on the learnt similarity. In our

method, we adopt convolutional neural networks to perform

classification. The output of the last layer (before the soft-max

layer) of neural networks can be viewed as a learned feature

representation of instances. Then, the similarity between a

pair of instances can be calculated by the inner product of

the feature vectors. Our neural network is trained with two

goals in mind. (i) The first is to improve the accuracy of the

classifier. (ii) The second goal is to, through the label guided

feature representation learning, map the instances into another

space in which the similarity can be more precisely measured.

We evaluate the proposed model on three classification

tasks. The first experiment is to predict whether a patient

will suffer from heart failure in the next six months. A

convolutional layer and max pooling layer are used to extract

features, and then a fully connected softmax layer is used to

do the prediction. The second experiment is opinion polarity

detection, we adopt a similar neural network as shown in [11].

Our third experiment is to classify the MNIST image with a

5-layer network. As we shall report in the experiment section,

our model outperforms the baselines on all three tasks.

The main contributions of our work are as follows:

1) We propose an effective batch mode active learning

scheme that takes advantages of the multi-objective

capacity of deep neural network.

2) We adopt deep neural network learning methods to re-

form the feature representations, on which the similarity

between instances can be more accurately measured.

3) We explore an Exploration-Exploitation query scheme

to ensure the true diversity of instances in a batch.

4) Our method is particularly effective in the cases where

the initial labeled data is in shortage, or the labeling

is costly due to the requirement of specific domain

knowledge. The result reported in Fig. 4 demonstrates

our method in such scenario of heart failure prediction.

The contributions 2) and 3), to the best of our knowledge,

are the first attempt in BMAL and have not been explored

in the previous literature. The rest of the paper is organized

as follows. Section II introduces related studies. Section III

describes our model in detail. Section IV reports and discusses

the experiment results. Section V concludes our work.

II. RELATED WORK

In this section, we briefly review the related work. This

paper is closely related to active learning and deep learning.

A. Active Learning

There are two kinds of algorithms in active learning, which

are representativeness sampling and uncertainty sampling.

Representativeness sampling algorithms aim to select the most

representative instances according to data distribution. [1] [2]

[3] [4] cluster the unlabeled instances and select the most rep-

resentative instances of those clusters to query. The successes

of this kind of cluster-based algorithms directly rely on the

employed clustering algorithm. Huang [12] proposed a QUIRE

approach which combines the informativeness and representa-

tiveness of an instance. Chattopadhyay [13] proposed to select

the representative instances according to the unlabeled data

distribution. Uncertainty sampling is more frequently adopted,

which selects the most uncertain instances at each iteration.

The uncertainty can be measured differently. Support vector

machine active learning [14] chooses the instance closest to

the classification boundary in kernel space. [15] [16] construct

a committee, the disagreement of which can be viewed as

the informativeness. All these algorithms mentioned above

focused on selecting a single informative instance to query

at each iteration. It’s infeasible and inefficient to label the

instances one by one. A mini-batch of labeled data are usually

trained at the same time in the deep neural networks. It is also

unreasonable to retrain the neural networks at every iteration

with only one additional labeled instance. So we use batch

mode active learning to select instances, which selects multiple

unlabeled data simultaneously to query. There are also some

works aimed to combine the representativeness sampling and

the uncertainty sampling [13] [17].

B. Batch Mode Active Learning

In batch mode selection, it’s crucial to reduce the redun-

dancy between the selected instances of the same batch.

Hoi [9] chooses a batch of instances which have the mini-

mum Fisher information to reduce the redundancy. There are

also many batch mode active learning algorithms based on

SVMactive. Joshiy [5] proposed to greedily select a group

of data with maximum utility and minimum redundancy

which is measured by the probability estimates in multi-class

image classification. Schohn [6] presented to measure the

diversity with the distances from the separating hyperplane

of a linear SVM. Brinker [2] proposed a similar algorithm

to query a batch of instances based on the angles in the
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hyperplane of feature space in SVM. Wang [7] combined

representativeness and diversity. Xu [8] incorporated a density

measure to SVM active learning. Xia [4] first clustered the

unlabeled instances in feature space and then selects a batch

of instances in different clusters to incorporate diversity. Guo

[18] proposed a discriminative strategy that chooses a batch of

points which have the minimum entropy and maximum log-

likelihood. Besides, many attempts have been done to apply

active learning to networked data. Zhu [19] combined active

learning and semi-supervised learning to optimize harmonic

functions based on Gaussian random fields. Shi [17] developed

three criteria of maximum uncertainty, maximum impact and

minimum redundancy, and presented an objective function

combining all of them on networked data. Dasarathy [20]

proposed to a simple and efficient algorithm that queries for

the label of the vertex that bisects the shortest shortest path

between any pair of oppositely labeled vertices.

C. Exploration and Exploitation

These algorithms are much helpful on the exploitation of

refining the decision boundary by querying the instances near

to the boundary. At the early stage of active learning, the small

labeled set might not cover all the import regions of data space.

Focusing on instances close to the decision boundary prevent

exploration of the regions where the examples are currently

misclassified [21]. As results, many active learning algorithms

combined with exploration have been proposed. The choice of

examples can be considered as the dilemma between the explo-

ration and exploitation. Bondu [22] proposed a new strategy

to manage the comprise. Osugi [10] introduced exploration

to active learning by dynamically adjusting the probability to

explore at each step. The update of the probability depends

on the change that is induced with the newly labeled example

on the hypothesis space. In the work of Cebron et al. [23], a

new Prototype Based Active Learning algorithm (PBAC) was

proposed, which used an integrated approach with a classifi-

cation model that combines the potential of each data point

and the classifier uncertainty in one single criterion. When the

full space of classes is not known in advance, some previous

works [24] [25] [26] [27] aim to discover the unknown classes.

There are roughly two criteria of exploration. The first is to

select the instances with the greatest representativeness [23].

The second is to select the instances farthest from the labeled

instances [10] [28].

D. Deep learning

Most active learning algorithms combined with exploration

are single mode. We propose new algorithms combining

BMAL with exploration-exploitation, in which the measures

of redundancy and similarity are explicitly trained in the

deep neural network. Recently, deep neural networks have

greatly improved the performance in many tasks, including

image classification, object detection, text classification and

so on. In image recognition, quite a few networks have been

explored to achieve a better accuracy. Very deep convolutional

networks [29] have greatly improved the image-net recognition

accuracy. [30] used residual networks, which are deeper and

easier to train, and performed better than [29]. Besides image

recognition, deep neural networks have also achieved excellent

performances. [31] [32] have driven big advances in objection

detection. Zhu [33] have proposed a new model to measure the

patient similarity with a deep convolutional neural network.

CNN [11] has also enjoyed accuracy gains in sentiment

analysis and question classification. The neural networks are

becoming deeper and deeper, and need more and more data to

train the models. While it’s hard to get a large scale of labeled

data, this paper attempts to introduce active learning to deep

neural networks so as to reduce the manual labeling effort.

III. METHOD

In this part, we propose a deep similarity-based batch mode

active learning algorithm, to reduce the labeling effort in deep

neural networks. The algorithm can be applied to different

neural networks. It aims to compute the similarity among

unlabeled instances more precisely and then select the most

informative instances from the unlabeled data pool to query

the oracles.

A. Definition and Settings

In this paper, we focus on pool-based active learning. In

the pool-based active learning setting, an algorithm actively

selects data points, the labels of which are unrevealed, to

requests their labels. We suppose there are a pool of u
unlabeled examples x1, x2, ..., xu and l labeled data instances

(xu+1, yu+1), (xu+2, yu+2), ..., (xu+l, yu+l), typically l << u.

Let U = {1, 2, ..., u} and L = {u + 1, u + 2, ..., u + l}
be the unlabeled set and labeled set respectively. We define

n = l + u as the total number of data instances. We denote

by y1, y2, ..., yn the labels of x1, x2, ..., xn. We let b denote

the budget of labeled instances, which means that there are at

most b instances in L.

We aim to learn a classifier h : X → Y , so that the minimal

generalization error Err(h) is satisfied with the no more than

b instances labeled, where X is the instance space and Y is

the label space.

Err(h) =
1

2|L|
∑

(x,y)∈L

[1− equal(h(x), y)] (1)

equal(a, b) =

{
1 if a = b

−1 else

Active learning aims to improve the performance of the

classifier h using the least number of labeled instances. The

problem is that given the classifier h, labeled set L and

unlabeled set U , how to select a batch of k(k << n) instances

S from U to label so that the quality of the classification model

can be improved most. The selected instances set S should be

informative and diverse at the same time. After the instances in

the selected set S is labeled and added into L at each iteration,

the classifier h will be retrained with the renewed L.

The algorithm repeats to select a batch of instances and

then retrain the learner. There is still two question in the
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TABLE I
VARIABLES USED IN OUR MODEL

Variable Description

U The set of unlabeled data instances
L The set of labeled data instances
S The set of selected data instances
i The index of a instance
xi The instance i
yi The label of instance i
fi The feature vector of instance i
k The number of instances to be selected
m The number of instances to be selected in exploitation
b The budget of labeled data instances

basic model. The first is how to select a batch informative

instances. The second is how to retrain the classifier with

the renewed L. Since the classifiers in our experiments are

deep neural network models, it’s very easy to cause overfitting

when the label set L is small and the early labeled instances

are always trained at every iteration. There are some tricks

on retraining the learner. The questions are illustrated in the

following subsections.

Table I gives a summary of variables used in our model.

B. Expoitation

We develop two criteria to measure the informativeness,

which are maximum uncertainty and minimum redundancy.

1) Maximum Uncertainty: The type of active learning

strategy is commonly known as uncertainty sampling. The

learner always cares about the instances it finds confusing.

The most common uncertainty sampling strategy uses entropy

as the measure [34]:

E(x) = −
∑

0<<i<<|Y |
hi(x)log(hi(x)) (2)

,where hi(x) denote the probability of that x belongs to class

yi.

The uncertainty of the selected set S is measured by

summing the entropy of instances in S:

E(S) =
∑
i∈S

E(xi) (3)

2) Minimum Redundancy: In conventional active learning,

the instances are queried one by one, which means k = 1. The

redundancy criterion is ignored. The learner always selects

the instance which has the maximal entropy at each iteration.

In batch mode active learning, k > 1. The redundancy

criterion should be taken into account. The instances selected

in the same batch should be diverse. It’s essential to adopt

an appropriate method to measure the similarity between

instances. The similarities are usually measured in feature

space. In SVMactive, the kernel space is used as feature space.

We use the output of the last layer (before the softmax layer)

as feature space. The feature vector of instance i is represented

as fi. We define the similarity function based on the feature

space.

Sim(i, j) = fiMfj (4)

, where M denote a similarity matrix. If M is an identity

matrix, the similarity function is represented as the product of

the two feature vectors. We can also learn the M in networks,

which will add some extra parameters.

R(S) represents the redundancy of the selected set S :

R(S) =
∑
i∈S

∑
j∈S

Sim(i, j) (5)

To this end, we define two functions E(S) and R(S) that

repectively represent the maximum uncertainty and minimum

redundancy. The linear combination of the two functions

naturally defines the objective function, i.e.,

I(S) = E(S)− α

|S|R(S) (6)

, where α denotes a parameter to balance importances of the

uncertainty and redundancy.

It’s hard and very expensive to find S with the maximal

I(S). We use a greedy algorithm instead for batch mode active

selection. The exploitation part in Algorithm 1 outlines the

greedy algorithm. The instance with the maximal uncertainty

is firstly selected. Then the next must be mostly uncertain

and different from the selected set. The similarity between an

instance and the selected set S:

Sim(i, S) = max
j∈S

(Sim(i, j)) (7)

Then the algorithm selects the next instance having maxi-

mum score:

I(i) = E(xi)− αSim(i, S) (8)

C. Exploration

At the beginning of active learning, we assume that the

labeled set is small and does not cover all the important

regions. From the exploration point of view, we want to

explore the unknown regions. Our criterion is to select the

instances farthest from the labeled set. We use the formula (7)

to measure the similarity between any unlabeled instance and

the labeled set.

Se = min
Se

∑
i∈Se

Sim(i, L ∪ S) +
∑
i∈Se

∑
j∈Se

Sim(i, j) (9)

Solving the objective function is NP-hard. We use a greedy

algorithm like in exploitation. We select the instance farthest

from the labeled set each time:

i = min
i

Sim(i, L ∪ S) (10)

After getting the farest instance from the L and S, we add

the instance into the selected set S one by one. The concrete

detail is illustrated in Algorithm 1.
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Algorithm 1 greedy batch-mode selection

Input: h, U, L, k,m
Output: S
Initialize:S = ∅

1: Calculate entropy vector E;

2: Calculate similarity matrix Sim;

3: Find i ∈ U to maximize E(xi) ;

4: S ← S ∪ {i};
5: # exploitation

6: for index = 1 to m− 1 do
7: for i ∈ U − S do
8: I(i) = E(xi)− βSim(i, S)
9: end for

10: Find i ∈ U − S to maximize I(i);
11: S ← S ∪ {i};
12: end for
13: # exploration

14: for index = m to k − 1 do
15: for i ∈ U − S do
16: I(i) = −Sim(i, L ∪ S)
17: end for
18: Find i ∈ U − S to maximize I(i);
19: S ← S ∪ {i};
20: end for

D. Combination

We will combine exploitation and exploration in batch

mode active learning. We can execute exploitation and ex-

ploration respectively at each iteration as in Algorithm 1.

At the beginning of active learning, it’s probable that the

number of labeled instances is too small to cover the true data

distribution in the feature space, so the exploration should be

more important. As the labeled set becomes larger and larger,

the exploitation becomes the prime target. At each iteration,

we will first select a set of m instances according to the

exploitation criterion. Then we will select k − m instances

farthest from all the labeled set and the m selected instances

according to the exploration criterion. We denote m as the

number of instances to be selected in exploitation, which

controls the importance of exploitation. At the early stage,

m is relatively small. As the instances are labeled and new

regions are explored, m begins to increase and the exploitation

becomes more and more important. Then m can increase

according to different strategies. We linearly increase m, until

m reaches a predefined value mupper. The experiments prove

that a dynamical m works better than a static one.

E. Pairwise Neural Network

The existing algorithms usually measure the similarity

among instances on the feature space. The feature space is

aimed to classify the instances more precisely, but not to

measure the similarity. It is difficult for the algorithms to fit

the two goals at the same time. We propose a new pairwise

network, the feature space of which is used to do the prediction

as well as to calculate the similarity. We use deep neural

(a)

(b)

Fig. 2. The framework of heart failure prediction. (a) The original framework,
which is used to predict the risk of heart failure. (b) The pairwise framework,
which is aimed to learn the similarity between pairwise patients. M is used to
calculate the similarity, Sim(i, j) = fiMfj . In our settings, M is an identity
matrix and Sim(i, j) becomes inner product.

networks, which have very strong learning ability and are able

to fit two objective functions at the same time, to learn the

classification tasks. Our model will be explicitly trained to fit

both the two goals. The first goal is described in formula (1),

which is to improve the accuracy of the classifier. The second

goal is to more precisely map the instances into another feature

space, the objective function of which can be represented as:

Err2(h) = − β

|S|2
∑
i∈S

∑
j∈S

Sim(i, j)equal(yi, yj) (11)

, where the definition of equal(·, ·) has been illustrated before.

We use the parameter β to balance the two objective functions.

The network needs to be slightly modified, but will not add

any extra parameter. For example, Figure 2(a) and 2(b) express

the network architectures which are used to predict the onset

risk of heart failure. The initial architecture is shown in Figure

2(a), which are only able to be trained to perform prediction.

Our pairwise model, consisting of two initial networks which

share the same variables, can learn the similarity between

pairwise instances as in Figure 2(b).

In training phase, we use pairwise neural networks to

learn the similarity between instances. In selection phase, the

learned similarity is used to select unlabeled instances. In the

test phase, the initial network is used to inference. Each of
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Fig. 3. Experimental setting of early prediction of the heart failure onset risk.

the networks can be trained to fit the classifier function. The

pairwise network can be trained to fit the similarity function.

IV. EXPERIMENTS AND EVALUATION

In this part, we will evaluate our approach for batch mode

active learning. We compare our method to the following

schemes:

• Passive random sampling, which randomly selects a batch

of instances from the unlabeled pool to train the learner.

• Entropy-max sampling, which selects the top k instances

with the biggest entropy as in formula (3).

• Kernel farthest first, which selects instance which is

farthest from the labeled set and the selected set in the

kernel space [35] [21]. We use the feature space replace

the kernel space of SVM. This method is the same as the

exploration part of our method in Algorithm 1.

• Batch mode active learning, which selects a batch of in-

stances with maximum uncertainty and maximum impact

[17]. The method is the same as the exploitation part of

our method in Algorithm 1.

For simplicity, we use Random, EM, KFF, BMAL, Explo-

ration to denote the above baseline methods and our method

respectively.

A. Heart Failure Prediction

We conduct an experiment on a real clinical EHR(Electronic

Health Records) data warehouse containing the records of

218,680 patients over four years. Each patient has a series

of medical records with temporal information, which consist

of demographics (i.e., age, gender, and weight), medications,

procedures, lab results, diagnosis and other clinical related

indicators. We will do a significant research on early prediction

of heart failure, which is frequently occurred disease and

extensively analyzed in healthcare applications. We carry out a

case-control study on heart failure prediction. The case-control

is a type of epidemiological observational study. It compares

two group of subjects who have the different disease but are

similar otherwise, so as to find the factors contributing to the

difference more precisely. The patients confirmed with heart

failure are the cases. A group of matched control patients

is then collected, who have the similar demographics and

characteristics.

In order to predict whether a patient will suffer from heart

failure at some future time, an operation criterion date is

needed for him or her. For case patients, the heart failure

confirmation date is the operation criterion date. For control

patients, the last day in our database is the operation criterion

date. We then split each patient’s EHR data into observation

window and prediction window. The prediction window con-

tains the medical records occurring at the last 180 days tracing

back from the operation criterion date. The records before the

prediction window, which belong to the observation window,

are used for analysis.

1) Patient Selection: We construct dataset with medical

events collected from patients in the EHR. We develop the

criteria that the number of records of each patient in the

observation window must be more than 50, so as to ensure

that there are enough events of clinical history to extract

medical feature to predict the diagnosis. Our domain experts

help us select 4626 patients from all the satisfied, including

2323 cases and 2323 controls. Since the temporal information

is so important, the medical records are reported according

to the occurring date. The EHR data for every patient is then

represented as a variable-length sequence. For convenience, we

pad patients’ records to the same size. The padding records

are medically meaningless.

2) Medical Concept Embedding: It’s difficult to represent

the medical events of patients effectively without loss of

information. Cheng [36] used a temporal matrix with time on

one dimension and event on the other dimension to represent

patients’ EHR data. But the matrix usually is sparse and

high dimensional. So we use a representation of temporal

medical records with medical concept embedding similar to

Zhu [33] and Zhan [37]. We train a word embedding model

with the EHR data containing roughly 16.9 million medical

event records of 218,680 patients. After removing the words

with the frequency less than 5, there are 8627 unique medical

events remained. All the medical events are converted to 50-

dimensional vectors by the embedding model. The padding

event’s vectors are replaced with zero. The medical sequence

for every patient is then converted to a fixed-size EHR matrix

with each record replaced by a corresponding embedding

vector.

3) Prediction Model: We implement a four-layer convolu-

tional neural network similar to [36] to perform prediction.

The first layer consists of those EHR matrices. The second

layer is a one-side convolution layer extracting local features

from the first layer. This layer aims to find the useful medical

record patterns which are relative to heart failure. The third

layer is a max pooling layer that captures the most important

feature with the highest value for each feature map. The fourth

layer is a fully-connected softmax prediction layer. This layer

can extract global feature. The architecture of our model for

heart failure onset risk prediction is presented in Figure 2(a).

In pairwise mode, the outputs of the third layer are used

as features. The learner is trained alternately to fit the two

objective function Err(h) and Err2(h). The model used to

learn the pairwise similarity is presented in Figure 2(b).

4) Result and Dicussion: Figure 4(a) summarizes results

of 10 runs of each experiment using Random, EM, KFF,

BMAL and Exploration-P(Our method). All the active learning

algorithms perform better than the passive learning (Ran-

dom). It demonstrates that active learning algorithms could
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Fig. 4. Heart failure prediction results for (a) baselines and our method, (b) BMAL with and without the pairwise model, (c)Exploration with and without
the pairwise model (our method), (d)KFF with and without the pairwise model.

be successfully applied to deep learning. Besides, our method

with exploration and exploitation performs the best, which

demonstrates the effectiveness of our method and that com-

bining exploitation with exploration is helpful. In Figure 4(b)

4(c) 4(d), we compare the pairwise network to the original

network in KFF, BMAL and Exploration. We denote “KFF”,

“BMAL”, “Exploration” the original methods, and denote the

corresponding methods with pairwise network by adding “-P”

after the methods’ name. We find that the all the algorithms

with the pairwise network perform better than the algorithms

with the original network. The precise similarity measure

learned in the pairwise network cause the performance gains.

Figure 5 illustrates the optimization of hyperparameter β in

our model. We find when β = 0.01, our model performs the

best. The bigger of the value of β, the faster the performance

improves at the beginning. It demonstrates that a precise

similarity function can help find the more informative and

diverse instances at the early stage. When similarity measure

is relatively precise, continuing to learn the similarity function

prevents to fit the classifier function. That explains why the

method with the highest value of β doesn’t perform very well

at last.

B. Minist Classification

We use MNIST dataset [38] to validate the effectiveness

of our proposed method. MNIST [38] is one of the most

well-known datasets in the machine learning field. It contains

60000 images in the training set and 10000 images in the

testing set. The training set and the testing set follow the same

distribution. The images, with the fixed size 28*28 in gray

scale, are hand-written digits ranging from 0 to 9. Examples

of the hand-written digits are shown in Figure 6.

We used a simple neural network to classify the images.

The network mainly consisted of three convolutions layer and

two fully connected layers. There were a pooling layer and

a dropout layer after each convolution layer. The output of

the first fully connected layer is a 625-dimensional vector for

each image, which can be viewed as the image’s feature. The

output of the network for each image is a 10-dimensional

vector corresponding to 10 classes. We use ReLU as activation
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Fig. 5. Active learning results of different β for the onset risk prediction of
heart failure. Results are averaged over 10 runs.

Fig. 6. Examples from the MNIST database.

function throughout the network. We apply our active learning

algorithm to the model. We connect two same networks, which

share all the variables, by multiplying the output feature of the

first fully connected layer. The output of the pairwise network

implies the similarity between the pairwise input images.

We run the network 10 times. The average results are shown

in Figure 7 and 8. At the early stage, passive learning performs

better than some active learning methods. We conjecture that

the training set selected by active learning is very unbalanced,

while the passive learning selects the training set with the

same distribution as the real dataset, which is balanced.

Then active learning algorithms achieve faster convergences

and lead to better generalization. The batch mode algorithm

outperforms the entropy-max algorithm, which demonstrates

the effectiveness of redundancy criterium.

Our method combines KFF and BMAL. At the beginning,

our method selects most instances in S with KFF, so our

method and KFF perform almost identically. Because they

are both focused on exploration, their performances are much

better than others. When training set size becomes larger

and larger, our method selects more and more instances with

BMAL rather than KFF. Since our method focused more

on exploitation, at last, it starts to surpass KFF. The results

demonstrate that the exploration is more important at the early

stage while the exploitation is more important at the late stage.

We add some noise to the dataset to test whether the

algorithm is robust. When active learner selects the instances

to query, the labels are randomly changed with probability

η ∈ {0, 0.05, 0.10, 0.15}. Figure 7 shows the results of

the methods under different noise rate. We found that our

algorithm is robust against high rates of classification noise.

Because the networks possibly forget the data trained be-

fore, the model should be trained with all the selected data.

The ratio of the newly selected data to all the labeled data

is influential in the performance of the methods. We train

the model with the previously labeled data and new labeled

data meanwhile, and each instance has the corresponding

probability of being chosen to train the model at each iteration.

Figure 8 shows the results under a different ratio of the new

labeled data of each mini-batch in training phase. We denote

r the ratio of the number of newly selected data to batch

size. When r = 1, only newly selected data are used to train

the model. The performances of all the methods significantly

degenerate except Random. We argue that the cause is that

the model forgets the previous instances and always focuses

on the new selected instances which are usually extremely

unbalanced. The random sampling performs relatively well

because of the balanced selected set. When r = 0, all the

labeled instances have the same probability to be chosen at

each mini-batch. We find that when newly selected data and

previously selected data are mixed properly, the model has the

best performance.

C. Opinion Polarity Detection

We also evaluate our algorithm on the opinion polarity

detection subtask of the MPQA dataset [39]. The dataset

consists of 10662 sentences, including 5331 positive sentences

and 5331 negative sentences. We use the model in [11] to

classify the opinion polarity.

Figure 9 shows the results of different active learning

algorithms. We see that our proposed method still performs

the best in text classification. The KFF method has a pretty

good performance at the early stage, which means that the

exploration is important at the beginning of the learning

process. The BMAL method outperforms the KFF method at

last, which implies that almost all the important regions are

explored and the exploitation becomes essential to improve

the classification accuracy.

V. CONCLUSION

In this paper, we address the problem of batch mode active

learning. We propose a new deep-similarity based batch mode

active learning algorithm and successfully combine active

learning algorithms with deep neural networks in this paper.

We use a pairwise deep neural network to train the feature

representations of instances, so as to maximize the diversity of

selected data in selection phase. The experimental results show

that our pairwise networks achieve better similarity measures

which cause better batch selection than the original single-

mode networks. Based on the precise similarity measure,

we propose a joint exploration-exploitation BMAL algorithm

which combines BMAL and KFF. We use a parameter β
to balance the importances of exploitation and exploration.

By appropriately combining exploration and exploitation, the

learner can make the selected batch of instances more diverse

and informative. The experimental results show that our joint

exploration-exploitation BMAL significantly outperforms the

baselines. In future work, we plan to measure the “success”
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Fig. 7. MNIST classification results for (a) no noise, (b) noise rate = 0.05, (c) noise rate = 0.10, and (d) noise rate = 0.15.
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Fig. 8. MNIST classification results for (a) new data rate r = 0, (b) new data rate r = 0.5, (c) new data rate r = 1.0. Let r denote the ratio of the number of
new selected data to batch size in training phase.

of the exploration at each step, which means how much the

exploration contributes to the accuracy gain of the classifier.

In addition, we plan to study how to dynamically adjust the

importance of exploration according to the “success” of the

exploration.
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