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Abstract—Active learning aims to reduce manual labeling
efforts by proactively selecting the most informative unlabeled
instances to query. In real-world scenarios, it’s often more
practical to query a batch of instances rather than a single
one at each iteration. To achieve this we need to keep not
only the informativeness of the instances but also their diversity.
Many heuristic methods have been proposed to tackle batch
mode active learning problems, however, they suffer from two
limitations which if addressed would significantly improve the
query strategy. Firstly, the similarity amongst instances is simply
calculated using the feature vectors rather than being jointly
learned with the classification model. This weakens the accuracy
of the diversity measurement. Secondly, these methods usually
exploit the decision boundary by querying the data points close
to it. However, this can be inefficient when the labeled set is too
small to reveal the true boundary. In this paper, we address both
limitations by proposing a deep neural network based algorithm.
In the training phase, a pairwise deep network is not only
trained to perform classification, but also to project data points
into another space, where the similarity can be more precisely
measured. In the query selection phase, the learner selects a
set of instances that are maximally uncertain and minimally
redundant (exploitation), as well as are most diverse from the
labeled instances (exploration). We evaluate the effectiveness
of the proposed method on a variety of classification tasks:
MNIST classification, opinion polarity detection and heart failure
prediction. Our method outperforms the baselines with both
higher classification accuracy and faster convergence rate.

[. INTRODUCTION

Due to the limited availability of training data and expensive
human labeling cost, various active learning algorithms have
been proposed to select the most informative instances from
the large pool of unlabeled data. Typical active learning
algorithms selected a single instance to query at each time,
and then ask humans for its label. This process repeats
until the learner approximately achieves the target learning
accuracy or the labeling budget is reached. The key to active
learning is the query strategy, whose goal is to select the most
useful examples which if labeled would significantly boost the
learning accuracy. Variety types of active learning methods
have been proposed, such as uncertainty sampling, query by
committee, and expected error reduction.

In conventional active learning, the learning model is trained
too frequently with little change in the training data. This
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is very inefficient and would cause serious overfitting if the
model is deep neural network based. To address this issue,
batch mode active learning (BMAL) algorithms were proposed
to select a group of instances at each iteration. In many existing
BMAL methods, it’s possible that a group of informative but
similar instances are selected at the same time. If this is the
case, it would waste the labeling effort as similar instances
provide the learning model essentially the same piece of
information. Therefore, besides the informativeness, diversity
is the key consideration in batch mode active learning. A set of
heuristic algorithms have been proposed for BMAL to choose
a set of informative and diverse instances. The cluster-based
algorithms [1] [2] [3] [4] firstly group the unlabeled instances
based on their similarity, and then select instances in different
groups to reduce the redundancy in the query set. By defining
a redundancy function based on the similarity in the projected
kernel space, the SVM, ¢ algorithms [5] [6] [2] [7] [8]
select a batch of informative and diverse instances at each
time. Hoi [9] proposes to choose a set of instances which
have the minimum Fisher information.

However, existing BMAL algorithms mainly suffers from
two limitations. (i) The performances of previous BMAL al-
gorithms heavily rely on the accuracy of the similarity measure
between instances. The algorithms map each instance into a
feature space, for example the kernel space in SVM tive,
and then the similarity is simply calculated based on some
predefined function. The similarity amongst instances is sim-
ply calculated using the feature vectors rather than jointly
learned with classification models. This weakens the accuracy
of the diversity measurement. (ii) Existing BMAL algorithms
are only good at “exploitation”. The learners always query
the instances closed to the decision boundary of the current
hypothesis. At the early stage, it’s probable that the number of
labeled instances is too small to cover the true data distribution
in the feature space. Therefore, it is also important to perform
“exploration”, so that the learning model would search for new
regions where a large pocket of instances may be misclassified.
For example, Osugi [10] cites an exclusive OR problem in
Figure 1. If all the labeled data are from regions 1, 2, 3, all
the data in region 4 will be misclassified. In this case, the
misclassified instances are away from the decision boundary
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Fig. 1. An example of exclusive OR problem. We denote the upper-left,
upper-right, lower-left, lower-right by 1, 2, 3, 4. Region 2 and 3 are positives
and region 1 and 4 are negtives.

based on the current hypothesis, and will never be queried.

We present a novel BMAL approach that explicitly learns
the similarity using deep neural network, and balances explo-
ration and exploitation based on the learnt similarity. In our
method, we adopt convolutional neural networks to perform
classification. The output of the last layer (before the soft-max
layer) of neural networks can be viewed as a learned feature
representation of instances. Then, the similarity between a
pair of instances can be calculated by the inner product of
the feature vectors. Our neural network is trained with two
goals in mind. (i) The first is to improve the accuracy of the
classifier. (ii) The second goal is to, through the label guided
feature representation learning, map the instances into another
space in which the similarity can be more precisely measured.

We evaluate the proposed model on three classification
tasks. The first experiment is to predict whether a patient
will suffer from heart failure in the next six months. A
convolutional layer and max pooling layer are used to extract
features, and then a fully connected softmax layer is used to
do the prediction. The second experiment is opinion polarity
detection, we adopt a similar neural network as shown in [11].
Our third experiment is to classify the MNIST image with a
5-layer network. As we shall report in the experiment section,
our model outperforms the baselines on all three tasks.

The main contributions of our work are as follows:

1) We propose an effective batch mode active learning
scheme that takes advantages of the multi-objective
capacity of deep neural network.

We adopt deep neural network learning methods to re-
form the feature representations, on which the similarity
between instances can be more accurately measured.
We explore an Exploration-Exploitation query scheme
to ensure the true diversity of instances in a batch.
Our method is particularly effective in the cases where
the initial labeled data is in shortage, or the labeling
is costly due to the requirement of specific domain

2)

3)

4)
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knowledge. The result reported in Fig. 4 demonstrates
our method in such scenario of heart failure prediction.

The contributions 2) and 3), to the best of our knowledge,
are the first attempt in BMAL and have not been explored
in the previous literature. The rest of the paper is organized
as follows. Section II introduces related studies. Section III
describes our model in detail. Section IV reports and discusses
the experiment results. Section V concludes our work.

II. RELATED WORK

In this section, we briefly review the related work. This
paper is closely related to active learning and deep learning.

A. Active Learning

There are two kinds of algorithms in active learning, which
are representativeness sampling and uncertainty sampling.
Representativeness sampling algorithms aim to select the most
representative instances according to data distribution. [1] [2]
[3] [4] cluster the unlabeled instances and select the most rep-
resentative instances of those clusters to query. The successes
of this kind of cluster-based algorithms directly rely on the
employed clustering algorithm. Huang [12] proposed a QUIRE
approach which combines the informativeness and representa-
tiveness of an instance. Chattopadhyay [13] proposed to select
the representative instances according to the unlabeled data
distribution. Uncertainty sampling is more frequently adopted,
which selects the most uncertain instances at each iteration.
The uncertainty can be measured differently. Support vector
machine active learning [14] chooses the instance closest to
the classification boundary in kernel space. [15] [16] construct
a committee, the disagreement of which can be viewed as
the informativeness. All these algorithms mentioned above
focused on selecting a single informative instance to query
at each iteration. It’s infeasible and inefficient to label the
instances one by one. A mini-batch of labeled data are usually
trained at the same time in the deep neural networks. It is also
unreasonable to retrain the neural networks at every iteration
with only one additional labeled instance. So we use batch
mode active learning to select instances, which selects multiple
unlabeled data simultaneously to query. There are also some
works aimed to combine the representativeness sampling and
the uncertainty sampling [13] [17].

B. Batch Mode Active Learning

In batch mode selection, it’s crucial to reduce the redun-
dancy between the selected instances of the same batch.
Hoi [9] chooses a batch of instances which have the mini-
mum Fisher information to reduce the redundancy. There are
also many batch mode active learning algorithms based on
SVM, tive. Joshiy [5] proposed to greedily select a group
of data with maximum utility and minimum redundancy
which is measured by the probability estimates in multi-class
image classification. Schohn [6] presented to measure the
diversity with the distances from the separating hyperplane
of a linear SVM. Brinker [2] proposed a similar algorithm
to query a batch of instances based on the angles in the



hyperplane of feature space in SVM. Wang [7] combined
representativeness and diversity. Xu [8] incorporated a density
measure to SVM active learning. Xia [4] first clustered the
unlabeled instances in feature space and then selects a batch
of instances in different clusters to incorporate diversity. Guo
[18] proposed a discriminative strategy that chooses a batch of
points which have the minimum entropy and maximum log-
likelihood. Besides, many attempts have been done to apply
active learning to networked data. Zhu [19] combined active
learning and semi-supervised learning to optimize harmonic
functions based on Gaussian random fields. Shi [17] developed
three criteria of maximum uncertainty, maximum impact and
minimum redundancy, and presented an objective function
combining all of them on networked data. Dasarathy [20]
proposed to a simple and efficient algorithm that queries for
the label of the vertex that bisects the shortest shortest path
between any pair of oppositely labeled vertices.

C. Exploration and Exploitation

These algorithms are much helpful on the exploitation of
refining the decision boundary by querying the instances near
to the boundary. At the early stage of active learning, the small
labeled set might not cover all the import regions of data space.
Focusing on instances close to the decision boundary prevent
exploration of the regions where the examples are currently
misclassified [21]. As results, many active learning algorithms
combined with exploration have been proposed. The choice of
examples can be considered as the dilemma between the explo-
ration and exploitation. Bondu [22] proposed a new strategy
to manage the comprise. Osugi [10] introduced exploration
to active learning by dynamically adjusting the probability to
explore at each step. The update of the probability depends
on the change that is induced with the newly labeled example
on the hypothesis space. In the work of Cebron et al. [23], a
new Prototype Based Active Learning algorithm (PBAC) was
proposed, which used an integrated approach with a classifi-
cation model that combines the potential of each data point
and the classifier uncertainty in one single criterion. When the
full space of classes is not known in advance, some previous
works [24] [25] [26] [27] aim to discover the unknown classes.
There are roughly two criteria of exploration. The first is to
select the instances with the greatest representativeness [23].
The second is to select the instances farthest from the labeled
instances [10] [28].

D. Deep learning

Most active learning algorithms combined with exploration
are single mode. We propose new algorithms combining
BMAL with exploration-exploitation, in which the measures
of redundancy and similarity are explicitly trained in the
deep neural network. Recently, deep neural networks have
greatly improved the performance in many tasks, including
image classification, object detection, text classification and
so on. In image recognition, quite a few networks have been
explored to achieve a better accuracy. Very deep convolutional
networks [29] have greatly improved the image-net recognition
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accuracy. [30] used residual networks, which are deeper and
easier to train, and performed better than [29]. Besides image
recognition, deep neural networks have also achieved excellent
performances. [31] [32] have driven big advances in objection
detection. Zhu [33] have proposed a new model to measure the
patient similarity with a deep convolutional neural network.
CNN [11] has also enjoyed accuracy gains in sentiment
analysis and question classification. The neural networks are
becoming deeper and deeper, and need more and more data to
train the models. While it’s hard to get a large scale of labeled
data, this paper attempts to introduce active learning to deep
neural networks so as to reduce the manual labeling effort.

III. METHOD

In this part, we propose a deep similarity-based batch mode
active learning algorithm, to reduce the labeling effort in deep
neural networks. The algorithm can be applied to different
neural networks. It aims to compute the similarity among
unlabeled instances more precisely and then select the most
informative instances from the unlabeled data pool to query
the oracles.

A. Definition and Settings

In this paper, we focus on pool-based active learning. In
the pool-based active learning setting, an algorithm actively
selects data points, the labels of which are unrevealed, to
requests their labels. We suppose there are a pool of w
unlabeled examples z1, x2, ..., ¢, and [ labeled data instances
(mqulv yu+1)9 ($u+2a yu+2)a seey (qurla qurl)y typically I <<u.
Let U = {1,2,...,u} and L {u+ Lu+2,.,u+1}
be the unlabeled set and labeled set respectively. We define
n = | 4+ u as the total number of data instances. We denote
by y1,y2, ..., yn the labels of z,xs,...,z,. We let b denote
the budget of labeled instances, which means that there are at
most b instances in L.

We aim to learn a classifier A : X — Y, so that the minimal
generalization error Err(h) is satisfied with the no more than
b instances labeled, where X is the instance space and Y is
the label space.

1
Bre(h) = 577 > 1 - equal(h(x),y)] M
(z,y)eL
1 ifa=">
equal(a,b) = {_1 else

Active learning aims to improve the performance of the
classifier h using the least number of labeled instances. The
problem is that given the classifier h, labeled set L and
unlabeled set U, how to select a batch of k(k << n) instances
S from U to label so that the quality of the classification model
can be improved most. The selected instances set .S should be
informative and diverse at the same time. After the instances in
the selected set .S is labeled and added into L at each iteration,
the classifier h will be retrained with the renewed L.

The algorithm repeats to select a batch of instances and
then retrain the learner. There is still two question in the



TABLE I
VARIABLES USED IN OUR MODEL

Variable Description

U The set of unlabeled data instances
L The set of labeled data instances

S The set of selected data instances

2 The index of a instance

T; The instance %

Yi The label of instance ¢

fi The feature vector of instance ¢

k The number of instances to be selected

m The number of instances to be selected in exploitation
b The budget of labeled data instances

basic model. The first is how to select a batch informative
instances. The second is how to retrain the classifier with
the renewed L. Since the classifiers in our experiments are
deep neural network models, it’s very easy to cause overfitting
when the label set L is small and the early labeled instances
are always trained at every iteration. There are some tricks
on retraining the learner. The questions are illustrated in the
following subsections.
Table I gives a summary of variables used in our model.

B. Expoitation

We develop two criteria to measure the informativeness,
which are maximum uncertainty and minimum redundancy.

1) Maximum Uncertainty: The type of active learning
strategy is commonly known as uncertainty sampling. The
learner always cares about the instances it finds confusing.
The most common uncertainty sampling strategy uses entropy
as the measure [34]:

2

0<<i<<|Y|

E(x) hi(x)log(hi(x)) 2)

,where h;(z) denote the probability of that x belongs to class
Yi-

The uncertainty of the selected set S is measured by
summing the entropy of instances in .S:

B(S) = 3 E(w)

€S

3

2) Minimum Redundancy: In conventional active learning,
the instances are queried one by one, which means k = 1. The
redundancy criterion is ignored. The learner always selects
the instance which has the maximal entropy at each iteration.
In batch mode active learning, & > 1. The redundancy
criterion should be taken into account. The instances selected
in the same batch should be diverse. It’s essential to adopt
an appropriate method to measure the similarity between
instances. The similarities are usually measured in feature
space. In SVM,.tive, the kernel space is used as feature space.
We use the output of the last layer (before the softmax layer)
as feature space. The feature vector of instance % is represented
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as f;. We define the similarity function based on the feature
space.

Sim(i, j) = fiM f; @

, where M denote a similarity matrix. If M is an identity
matrix, the similarity function is represented as the product of
the two feature vectors. We can also learn the M in networks,
which will add some extra parameters.

R(S) represents the redundancy of the selected set S :

R(S) =Y Sim(i, )
i€S jeS
To this end, we define two functions E(S) and R(S) that
repectively represent the maximum uncertainty and minimum
redundancy. The linear combination of the two functions
naturally defines the objective function, i.e.,

&)

@
5]

, where o denotes a parameter to balance importances of the
uncertainty and redundancy.

It’s hard and very expensive to find S with the maximal
1(.S). We use a greedy algorithm instead for batch mode active
selection. The exploitation part in Algorithm 1 outlines the
greedy algorithm. The instance with the maximal uncertainty
is firstly selected. Then the next must be mostly uncertain
and different from the selected set. The similarity between an
instance and the selected set S:

I(5) = E(S) R(5) ©)

Sim(s, S) = rjneaég(Slm(z,j))

7

Then the algorithm selects the next instance having maxi-
mum score:

I(i) = E(z;) — aSim(z, S) (8)

C. Exploration

At the beginning of active learning, we assume that the
labeled set is small and does not cover all the important
regions. From the exploration point of view, we want to
explore the unknown regions. Our criterion is to select the
instances farthest from the labeled set. We use the formula (7)
to measure the similarity between any unlabeled instance and
the labeled set.

S = min > Sim(i, LUS)+ > Y Sim(i,j) (9

¢ iesS, i€S. jES.

Solving the objective function is NP-hard. We use a greedy
algorithm like in exploitation. We select the instance farthest
from the labeled set each time:

i = min Sim(¢, LU S) (10)
After getting the farest instance from the L and S, we add

the instance into the selected set S one by one. The concrete
detail is illustrated in Algorithm 1.



Algorithm 1 greedy batch-mode selection
Input: h,U, L, k,m

Output: S

Initialize:S = @

1: Calculate entropy vector E;

2: Calculate similarity matrix Sim,;

3: Find i € U to maximize E(z;) ;

4 S+ Su{i}

5: # exploitation

6: for index =1tom —1 do

7: fori e U — S do

8: I(i) = E(z;) — Sim(%, S)

9: end for

10: Find i € U — S to maximize I(7);
11: S Su{i};

12: end for

13: # exploration

14: for index =m to k — 1 do

15: foric U — S do

16: I(i) = —Sim(i, LU S)

17: end for

18: Find i € U — S to maximize I(i);
19: S+ Su{il;
20: end for

D. Combination

We will combine exploitation and exploration in batch
mode active learning. We can execute exploitation and ex-
ploration respectively at each iteration as in Algorithm 1.
At the beginning of active learning, it’s probable that the
number of labeled instances is too small to cover the true data
distribution in the feature space, so the exploration should be
more important. As the labeled set becomes larger and larger,
the exploitation becomes the prime target. At each iteration,
we will first select a set of m instances according to the
exploitation criterion. Then we will select & — m instances
farthest from all the labeled set and the m selected instances
according to the exploration criterion. We denote m as the
number of instances to be selected in exploitation, which
controls the importance of exploitation. At the early stage,
m is relatively small. As the instances are labeled and new
regions are explored, m begins to increase and the exploitation
becomes more and more important. Then m can increase
according to different strategies. We linearly increase m, until
m reaches a predefined value myppe,. The experiments prove
that a dynamical m works better than a static one.

E. Pairwise Neural Network

The existing algorithms usually measure the similarity
among instances on the feature space. The feature space is
aimed to classify the instances more precisely, but not to
measure the similarity. It is difficult for the algorithms to fit
the two goals at the same time. We propose a new pairwise
network, the feature space of which is used to do the prediction
as well as to calculate the similarity. We use deep neural
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Fig. 2. The framework of heart failure prediction. (a) The original framework,
which is used to predict the risk of heart failure. (b) The pairwise framework,
which is aimed to learn the similarity between pairwise patients. M is used to
calculate the similarity, Sim (i, j) = f; M f;. In our settings, M is an identity
matrix and Sim(i, j) becomes inner product.

networks, which have very strong learning ability and are able
to fit two objective functions at the same time, to learn the
classification tasks. Our model will be explicitly trained to fit
both the two goals. The first goal is described in formula (1),
which is to improve the accuracy of the classifier. The second
goal is to more precisely map the instances into another feature
space, the objective function of which can be represented as:

Erra(h) = f% Z Z Sim(4, j)equal(ys, y;)

i€S jes

)

, where the definition of equal(-, -) has been illustrated before.
We use the parameter 3 to balance the two objective functions.

The network needs to be slightly modified, but will not add
any extra parameter. For example, Figure 2(a) and 2(b) express
the network architectures which are used to predict the onset
risk of heart failure. The initial architecture is shown in Figure
2(a), which are only able to be trained to perform prediction.
Our pairwise model, consisting of two initial networks which
share the same variables, can learn the similarity between
pairwise instances as in Figure 2(b).

In training phase, we use pairwise neural networks to
learn the similarity between instances. In selection phase, the
learned similarity is used to select unlabeled instances. In the
test phase, the initial network is used to inference. Each of
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Fig. 3. Experimental setting of early prediction of the heart failure onset risk.

the networks can be trained to fit the classifier function. The
pairwise network can be trained to fit the similarity function.

IV. EXPERIMENTS AND EVALUATION

In this part, we will evaluate our approach for batch mode
active learning. We compare our method to the following
schemes:

o Passive random sampling, which randomly selects a batch
of instances from the unlabeled pool to train the learner.
Entropy-max sampling, which selects the top k instances
with the biggest entropy as in formula (3).

Kernel farthest first, which selects instance which is
farthest from the labeled set and the selected set in the
kernel space [35] [21]. We use the feature space replace
the kernel space of SVM. This method is the same as the
exploration part of our method in Algorithm 1.

Batch mode active learning, which selects a batch of in-
stances with maximum uncertainty and maximum impact
[17]. The method is the same as the exploitation part of
our method in Algorithm 1.

For simplicity, we use Random, EM, KFF, BMAL, Explo-
ration to denote the above baseline methods and our method
respectively.

A. Heart Failure Prediction

We conduct an experiment on a real clinical EHR(Electronic
Health Records) data warehouse containing the records of
218,680 patients over four years. Each patient has a series
of medical records with temporal information, which consist
of demographics (i.e., age, gender, and weight), medications,
procedures, lab results, diagnosis and other clinical related
indicators. We will do a significant research on early prediction
of heart failure, which is frequently occurred disease and
extensively analyzed in healthcare applications. We carry out a
case-control study on heart failure prediction. The case-control
is a type of epidemiological observational study. It compares
two group of subjects who have the different disease but are
similar otherwise, so as to find the factors contributing to the
difference more precisely. The patients confirmed with heart
failure are the cases. A group of matched control patients
is then collected, who have the similar demographics and
characteristics.

In order to predict whether a patient will suffer from heart
failure at some future time, an operation criterion date is
needed for him or her. For case patients, the heart failure
confirmation date is the operation criterion date. For control
patients, the last day in our database is the operation criterion
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date. We then split each patient’s EHR data into observation
window and prediction window. The prediction window con-
tains the medical records occurring at the last 180 days tracing
back from the operation criterion date. The records before the
prediction window, which belong to the observation window,
are used for analysis.

1) Patient Selection: We construct dataset with medical
events collected from patients in the EHR. We develop the
criteria that the number of records of each patient in the
observation window must be more than 50, so as to ensure
that there are enough events of clinical history to extract
medical feature to predict the diagnosis. Our domain experts
help us select 4626 patients from all the satisfied, including
2323 cases and 2323 controls. Since the temporal information
is so important, the medical records are reported according
to the occurring date. The EHR data for every patient is then
represented as a variable-length sequence. For convenience, we
pad patients’ records to the same size. The padding records
are medically meaningless.

2) Medical Concept Embedding: 1t’s difficult to represent
the medical events of patients effectively without loss of
information. Cheng [36] used a temporal matrix with time on
one dimension and event on the other dimension to represent
patients’ EHR data. But the matrix usually is sparse and
high dimensional. So we use a representation of temporal
medical records with medical concept embedding similar to
Zhu [33] and Zhan [37]. We train a word embedding model
with the EHR data containing roughly 16.9 million medical
event records of 218,680 patients. After removing the words
with the frequency less than 5, there are 8627 unique medical
events remained. All the medical events are converted to 50-
dimensional vectors by the embedding model. The padding
event’s vectors are replaced with zero. The medical sequence
for every patient is then converted to a fixed-size EHR matrix
with each record replaced by a corresponding embedding
vector.

3) Prediction Model: We implement a four-layer convolu-
tional neural network similar to [36] to perform prediction.
The first layer consists of those EHR matrices. The second
layer is a one-side convolution layer extracting local features
from the first layer. This layer aims to find the useful medical
record patterns which are relative to heart failure. The third
layer is a max pooling layer that captures the most important
feature with the highest value for each feature map. The fourth
layer is a fully-connected softmax prediction layer. This layer
can extract global feature. The architecture of our model for
heart failure onset risk prediction is presented in Figure 2(a).

In pairwise mode, the outputs of the third layer are used
as features. The learner is trained alternately to fit the two
objective function Err(h) and Erra(h). The model used to
learn the pairwise similarity is presented in Figure 2(b).

4) Result and Dicussion: Figure 4(a) summarizes results
of 10 runs of each experiment using Random, EM, KFF,
BMAL and Exploration-P(Our method). All the active learning
algorithms perform better than the passive learning (Ran-
dom). It demonstrates that active learning algorithms could
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Fig. 4. Heart failure prediction results for (a) baselines and our method, (b) BMAL with and without the pairwise model, (c)Exploration with and without

the pairwise model (our method), (d)KFF with and without the pairwise model.

be successfully applied to deep learning. Besides, our method
with exploration and exploitation performs the best, which
demonstrates the effectiveness of our method and that com-
bining exploitation with exploration is helpful. In Figure 4(b)
4(c) 4(d), we compare the pairwise network to the original
network in KFF, BMAL and Exploration. We denote “KFF”,
“BMAL”, “Exploration” the original methods, and denote the
corresponding methods with pairwise network by adding “-P”
after the methods’ name. We find that the all the algorithms
with the pairwise network perform better than the algorithms
with the original network. The precise similarity measure
learned in the pairwise network cause the performance gains.

Figure 5 illustrates the optimization of hyperparameter § in
our model. We find when S = 0.01, our model performs the
best. The bigger of the value of [, the faster the performance
improves at the beginning. It demonstrates that a precise
similarity function can help find the more informative and
diverse instances at the early stage. When similarity measure
is relatively precise, continuing to learn the similarity function
prevents to fit the classifier function. That explains why the
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method with the highest value of 8 doesn’t perform very well
at last.

B. Minist Classification

We use MNIST dataset [38] to validate the effectiveness
of our proposed method. MNIST [38] is one of the most
well-known datasets in the machine learning field. It contains
60000 images in the training set and 10000 images in the
testing set. The training set and the testing set follow the same
distribution. The images, with the fixed size 28*28 in gray
scale, are hand-written digits ranging from O to 9. Examples
of the hand-written digits are shown in Figure 6.

We used a simple neural network to classify the images.
The network mainly consisted of three convolutions layer and
two fully connected layers. There were a pooling layer and
a dropout layer after each convolution layer. The output of
the first fully connected layer is a 625-dimensional vector for
each image, which can be viewed as the image’s feature. The
output of the network for each image is a 10-dimensional
vector corresponding to 10 classes. We use ReLLU as activation
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function throughout the network. We apply our active learning
algorithm to the model. We connect two same networks, which
share all the variables, by multiplying the output feature of the
first fully connected layer. The output of the pairwise network
implies the similarity between the pairwise input images.

We run the network 10 times. The average results are shown
in Figure 7 and 8. At the early stage, passive learning performs
better than some active learning methods. We conjecture that
the training set selected by active learning is very unbalanced,
while the passive learning selects the training set with the
same distribution as the real dataset, which is balanced.
Then active learning algorithms achieve faster convergences
and lead to better generalization. The batch mode algorithm
outperforms the entropy-max algorithm, which demonstrates
the effectiveness of redundancy criterium.

Our method combines KFF and BMAL. At the beginning,
our method selects most instances in S with KFF, so our
method and KFF perform almost identically. Because they
are both focused on exploration, their performances are much
better than others. When training set size becomes larger
and larger, our method selects more and more instances with
BMAL rather than KFF. Since our method focused more
on exploitation, at last, it starts to surpass KFF. The results
demonstrate that the exploration is more important at the early
stage while the exploitation is more important at the late stage.

We add some noise to the dataset to test whether the
algorithm is robust. When active learner selects the instances
to query, the labels are randomly changed with probability
n € {0,0.05,0.10,0.15}. Figure 7 shows the results of
the methods under different noise rate. We found that our
algorithm is robust against high rates of classification noise.

Because the networks possibly forget the data trained be-
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fore, the model should be trained with all the selected data.
The ratio of the newly selected data to all the labeled data
is influential in the performance of the methods. We train
the model with the previously labeled data and new labeled
data meanwhile, and each instance has the corresponding
probability of being chosen to train the model at each iteration.
Figure 8 shows the results under a different ratio of the new
labeled data of each mini-batch in training phase. We denote
r the ratio of the number of newly selected data to batch
size. When r = 1, only newly selected data are used to train
the model. The performances of all the methods significantly
degenerate except Random. We argue that the cause is that
the model forgets the previous instances and always focuses
on the new selected instances which are usually extremely
unbalanced. The random sampling performs relatively well
because of the balanced selected set. When r = 0, all the
labeled instances have the same probability to be chosen at
each mini-batch. We find that when newly selected data and
previously selected data are mixed properly, the model has the
best performance.

C. Opinion Polarity Detection

We also evaluate our algorithm on the opinion polarity
detection subtask of the MPQA dataset [39]. The dataset
consists of 10662 sentences, including 5331 positive sentences
and 5331 negative sentences. We use the model in [11] to
classify the opinion polarity.

Figure 9 shows the results of different active learning
algorithms. We see that our proposed method still performs
the best in text classification. The KFF method has a pretty
good performance at the early stage, which means that the
exploration is important at the beginning of the learning
process. The BMAL method outperforms the KFF method at
last, which implies that almost all the important regions are
explored and the exploitation becomes essential to improve
the classification accuracy.

V. CONCLUSION

In this paper, we address the problem of batch mode active
learning. We propose a new deep-similarity based batch mode
active learning algorithm and successfully combine active
learning algorithms with deep neural networks in this paper.
We use a pairwise deep neural network to train the feature
representations of instances, so as to maximize the diversity of
selected data in selection phase. The experimental results show
that our pairwise networks achieve better similarity measures
which cause better batch selection than the original single-
mode networks. Based on the precise similarity measure,
we propose a joint exploration-exploitation BMAL algorithm
which combines BMAL and KFF. We use a parameter (3
to balance the importances of exploitation and exploration.
By appropriately combining exploration and exploitation, the
learner can make the selected batch of instances more diverse
and informative. The experimental results show that our joint
exploration-exploitation BMAL significantly outperforms the
baselines. In future work, we plan to measure the “success”
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of the exploration at each step, which means how much the
exploration contributes to the accuracy gain of the classifier.
In addition, we plan to study how to dynamically adjust the
importance of exploration according to the “success” of the
exploration.
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