
Learning Robust Representations with Graph
Denoising Policy Network

Lu Wang1, Wenchao Yu2∗, Wei Wang3, Wei Cheng2, Wei Zhang1, Hongyuan Zha4, Xiaofeng He1∗, Haifeng Chen2
1 School of Computer Science and Technology, East China Normal University

2 NEC Laboratories America, Inc., 3University of California Los Angeles, 4Georgia Institute of Technology
1{luwang,xfhe}@stu.ecnu.edu.cn, zhangwei.thu2011@gmail.com, 2{wyu,weicheng,haifeng}@nec-labs.com,

3weiwang@cs.ucla.edu, 4zha@cc.gatech.edu

Abstract—Existing representation learning methods based on
graph neural networks and their variants rely on the aggregation
of neighborhood information, which makes it sensitive to noises in
the graph, e.g. erroneous links between nodes, incorrect/missing
node features. In this paper, we propose Graph Denoising Policy
Network (short for GDPNet) to learn robust representations from
noisy graph data through reinforcement learning. GDPNet first
selects signal neighborhoods for each node, and then aggre-
gates the information from the selected neighborhoods to learn
node representations for the down-stream tasks. Specifically, in
the signal neighborhood selection phase, GDPNet optimizes the
neighborhood for each target node by formulating the process
of removing noisy neighborhoods as a Markov decision process
and learning a policy with task-specific rewards received from
the representation learning phase. In the representation learn-
ing phase, GDPNet aggregates features from signal neighbors
to generate node representations for down-stream tasks, and
provides task-specific rewards to the signal neighbor selection
phase. These two phases are jointly trained to select optimal sets
of neighbors for target nodes with maximum cumulative task-
specific rewards, and to learn robust representations for nodes.
Experimental results on node classification task demonstrate the
effectiveness of GDNet, outperforming the state-of-the-art graph
representation learning methods on several well-studied datasets.

Index Terms—graph representation learning, graph neural
networks, graph embedding, reinforcement learning

I. INTRODUCTION

Recently, remarkable progress has been made toward graph
representation learning, a.k.a graph/network embedding, which
solves the graph analytics problem by mapping nodes in a
graph to low-dimensional vector representations while effec-
tively preserving the graph structure [1]–[3]. Graph neural
networks (GNNs) have been widely applied in graph analysis
due to the ground-breaking performance with deep architec-
tures and recent advances in optimization techniques [4], [5].
Existing representation learning methods based on GNNs, e.g.
GraphSAGE [6], Graph Convolution Networks (GCNs) [7],
[8] and Graph Attention Networks (GATs) [9], rely on the
aggregation of neighborhood information, which makes the
model vulnerable to noises in the input graph.

Good graph representations are expected to be robust to the
erroneous links, mislabeled nodes and partial corrupted fea-

∗Corresponding authors.

tures in the input graph, and capture geometric dependencies
among nodes in the graph. However existing approaches have
limited efforts on robustness study in this regard. In order
to overcome this limitation of graph representation learning in
handling noisy graph data, we propose Graph Denoising Policy
Network, denoted as GDPNet, to learn robust representations
through reinforcement learning. GDPNet includes two phases:
signal neighbor selection and representation learning. It first
selects signal neighbors for each node, and then aggregates
the information from the selected neighbors to learn node
representations with respect to the down-stream tasks.

The major challenge here is on how to train these two
phases jointly, particularly when the model has no explicit
knowledge about where the noise might be. We address this
challenge by formulating the graph denoising process as a
Markov decision process. Intuitively, although we do not have
an explicit supervision for the signal neighbor selection, we
can measure the performance of the representations learned
with the selected neighbors on tasks like node classification,
then the task-specific rewards received from the representation
learning phase can be used for trial-and-error-search. In the
signal neighbor selection phase, GDPNet optimizes the neigh-
borhood for each node by formulating the process of removing
the noisy neighbors as a Markov decision process and learning
a policy with the task-specific rewards received from the repre-
sentation learning phase. In the representation learning phase,
GDPNet trains a set of aggregator functions that accumulate
feature information from the selected signal neighbors of each
target node. Thus in the test time, the representations of unseen
nodes can be generated with the trained GDPNet with graph
structure and the associated node feature information. The
task-specific rewards computed w.r.t the down-stream tasks
are passed to the signal neighbor selection phase. These two
phases are jointly trained to select optimal sets of neighbors for
target nodes with maximum cumulative task-specific rewards,
and to learn robust representations for nodes.

In summary, our contributions in this work include:
• We propose a novel model, GDPNet, for robust graph

representation learning through reinforcement learning.
GDPNet consists of two phrases, namely signal neigh-
bor selection and representation learning, which enables

…

) = 1
state: +/
reward: 5(+/, 0/ = 1) > 5(+/, 0/ = 0)
action: 0/ = 1

) = 2
state: +2
reward:5(+2, 02 = 1) < 5(+2, 02 = 0)
action: 02 = 0

) = 5
state:+4
reward: 5(+4, 04 = 1) > 5(+4, 04 = 0)
action: 04 = 1

) = 0
state: +,

Node embedding

Information aggregation

Action = 0, node removal

Action = 1, node selection

Target node

Signal neighbor

Noise neighbor

Unknown node

Fig. 1. Illustration of the GDPNet model from the view of signal neighbor selection

GDPNet to effectively learn node representations from
noisy graph data.

• We formulate signal neighbor selection as a reinforce-
ment learning problem, which enables the model to
perform graph denoising just with weak supervision from
the task-specific reward signals.

• GDPNet is able to generate representations for unseen
nodes in an inductive fashion, which leverages both graph
structure and the associated node feature information.

II. APPROACH

We formulate the robust graph representation learning prob-
lem as sequentially selecting an optimal set of neighbors
for each node with maximum cumulative reward signals and
aggregating features from nodes’ optimal neighborhoods. In
this part, we formally define the problem, the environment
setting for signal neighbor selection, and the GDPNet model.

A. Problem Formulation

Given an attributed graph G = {E ,V, X}, where E is
the edge set and V is the node set. X ∈ R|V|×D collects
the attribute information for each node where xv ∈ RD
is a D-dimensional attribute vector of node v ∈ V . Note
that we can simply use one-hot encoding for node features
for a graph without attributes. Given a target node v, let
N (v) = {u1, u2, ..., u|N (v)|} be the one-hop neighbors of v.

We aim to find a lower-dimensional representation hv for
node v ∈ V . Firstly, a function f : 2N (v) → 2N̂ (v) is learned to
map a neighborhood set N (v) into a signal neighborhood set
N̂ (v), where N̂ (v) ⊆ N (v). Then the node representations
are generated based on the signal neighborhood set, h :

2N̂ (v) f−→ Rd . Given an order of the neighbors u1, ..., u|N (v)|,
we decompose the conditional probability of N̂ (v) given
N (v) as p(N̂ (v)|N (v)) = Π

|N̂ (v)|
t=1 p(at|N (v), a1, ..., at−1)

using chain rule [10], where at = {0, 1}, at = 1 indicates
selecting ut as a signal neighbor while at = 0 indicates
removing ut. We solve this signal neighbor selection problem
by learning a policy πθ(at|st) = p(at|N (v), a1, ..., at−1)
with neighborhood set N (v) and the predicted action values
{ai}t−1i=1 as inputs. The objective of signal neighbor selection
is to select a subset of neighbors that maximize a given reward
function Rπ(N̂ (v)) = EN̂ (v)

[∑|N̂ (v)|
t=1 rt

]
, where N̂ (v) is

the generated signal neighborhood set, rt is the task-specific
reward used to evaluate the action at, and Rπ is the cumulative

reward function. The representation of node v can then be
learned by aggregating the neighborhood information from the
signal neighbors N̂ (v).

Selecting an optimal subset from a candidate set by max-
imizing an objective function is NP-hard which can be ap-
proximatively solved by greedy algorithms with a submodular
function [11]. With this observation, we design our reward
function that satisfies submodularity, and show that the pro-
posed GDPNet is mathematically equivalent to solving the
submodular maximizing problem. Thus our solution can be
bounded by (1 − 1

e)R (N (v)∗), where N (v)∗ is the optimal
neighborhood set.

B. Signal Neighbor Selection Environment

We formulate the problem of selecting a set of signal
neighbors from a given neighborhood set as a Markov decision
process (MDP) (S,A, P,R, γ), where S is the state space,
A is the action space, P is the state transition probability
matrix that describes the transition probability of the state
after taking an action, R is the reward function and γ is
discount factor of the MDP. The signal neighbor selection
process can be described by a trajectory with N̂ (v) time steps
s0, a0, r0, ..., s|N̂ (v)|, a|N̂ (v)|, r|N̂ (v)|. MDP requires the state
transition dynamics to satisfy the Markov property p(st+1|st).
Thus we learn a policy πθ(at|st) that only considers the
current state st.

In reinforcement learning, the agent learns a policy via
interacting with the environment. The main components (i.e.,
state, action, and reward) in the signal neighbor selection
environment are described as follows,

• State (S): The state st = [htv, hut] encodes the informa-
tion from the current node v and the selected node ut,
which is concatenation of the intermediate embeddings
htv and hut of the target node v and the tth neighbor ut,
respectively. The calculation of htv and hut are defined in
Section II-C. Consequently, a newly selected neighbor ut
will update the embedding of v from htv to ht+1

v which
can be viewed as state transition.

• Action (A): Given an order of the neighbors
u1, ..., u|N (v)| of node v, the policy πθ(at|st) maps the
state st into an action at = {0, 1} at each time step t,
t = 1, ..., |N̂ (v)|. a1 = 1 indicates u1 is selected as a
signal neighbor, while a1 = 0 means u1 is not selected.

• Reward (R): Our goal is to find an optimal set of
signal neighbors N̂ (v) from a finite neighborhood set
N (v) to learn robust graph embedding for downstream
tasks such as node classification, link prediction and
node clustering. The downstream tasks can produce task-
specific scores as the reward signal for the signal neighbor
selection phase. To ensure that the combination of the
selected neighbors have maximum cumulative rewards.
We employ the submodular function framework to define
the marginal value reward function:

rt =
fc(AGG(xv, {xut}))∑

ũ∈N̂ (v)t
fc(AGG(xv, {xũ}))

(1)

where AGG(·) aggregates both the target node feature
xv and the neighbors’ features {xut} to update the
representations of the target node [6], and fc(·) returns
the micro-averaged F1 score from the node classification
task when considers ut as the neighbor.

The environment updates the states from st = [htv, hut]
to st+1 = [ht+1

v , hut+1
] by calculating the representations

ht+1
v = AGG(xv, {xũ,∀ũ ∈ N̂ (v)t}) at time t + 1. It can

be considered as a state transition:

p(st+1|st) =
∑
at

πθ(at|st)p(st+1|st, at) (2)

If at = 1, N̂ (v)t = N̂ (v)t−1 ∪ {ut}, otherwise N̂ (v)t =
N̂ (v)t−1.

C. Graph Denoising Policy Network

With the definitions of the signal neighbor selection envi-
ronment, we introduce the GDPNet model which includes two
phases: signal neighbor selection and representation learning.
Given a target node v, GDPNet first takes its neighborhood
set N (v) as input and outputs a signal neighborhood subset
N̂ (v). Then the representations hv is learned by aggregating
the information from the signal neighborhood subset N̂ (v).

1) Determine the Neighborhood Order: As aforemen-
tioned, we use chain rule to decompose the signal neighbor
selection as a sequential decision making process. However, it
requires an order to make decisions. Here we design a high-
level policy to learn an order [u1, ..., u|N (v)|] for the policy πθ
to take action.

We define a regret score l for each neighbor to help deter-
mine the order. A neighbor with large regret score indicates
it will be selected with higher probability. At each time step,
we calculate the regret score of each neighbor and sample
one of the neighbor to be the tth neighbor. The regret score is
described as follows:

lk = W1 · ReLU(W2 · st), st = [htv, huk] (3)

where uk is the k-th neighborhood in the neighborhood set
N (v) with a random order and W1,W2 are parameter matri-
ces. To reduce the size of N̂ (v) for computational efficiency,
we add an ending neighbor ue to N (v) for early stopping
purpose. When ue is sampled, the neighborhood selection
process of node v stops. We use the Softmax function to

normalize the regret scores, and sample one neighbor from
the distribution generated by Softmax to be the tth neighbor.

ut ∼ SOFTMAX([l1, l2, ..., le, ..., l|N (v)ct|]) (4)

where ut ∈ N (v)ct is the tth neighbor for signal neighbor
selection, N (v)ct = (N (v) \ N̂ (v)t). le indicates the regret
score of the ending neighbor ue. After selecting a neighbor
ut, we adopt the policy πθ to determine whether to select ut
as a signal neighbor. Then ut will be removed from N̂ (v)ct .

2) Signal Neighbor Selection: Given the tth neighbor ut,
GDPNet takes an action at = {0, 1} at time step t to decide
whether to select the ut. We will make |N̂ (v)| decisions
to select the signal neighbors for node v. Here the total
number of signal neighbors can be automatically determined.
As illustrated in Fig. 1, a policy πθ(at|st) is learned to map
the state st to the action at at time step t, t = 1, ..., |N̂ (v)|,
meanwhile the corresponding reward rt will be provided. Our
goal is to maximize the total reward of all the actions taken
during these time steps, which can be learned by the following
policy network,

πθ(at|st) = σ (W1 · ReLU(W2 · st))
at ∼ πθ ∈ {0, 1} (5)

where W1 and W2 are weight matrices shared with Eq. (3),
and action at is sampled from a Bernoulli distribution which
is generated by πθ(at|st).

3) Representation Learning: At each time step, GDPNet
calculates the embeddings of the target node v and the t-th
neighbor ut as follows,

htv ← AGG(xv, {xũ,∀ũ ∈ N̂ (v)t}) (6)
hut ← AGG(xut , {∅}) (7)

where AGG(x, {yi,∀i ∈ I}) = σ(W · MEAN({x} ∪ {yi,∀i ∈
I}), xv and xut are the features of node v and ut respectively.
We computed the embedding of neighbor ut via its own feature
xut , because the goal is to evaluate the individual contribution
of ut. In this work we only consider one-hop neighbors for
simplicity. The GDPNet model can be easily extended to
aggregate the information from multi-hop neighbors with an
augmented candidate neighborhood set for selecting the signal
neighbors.

As defined in Section II-B, the state at time step t,
st = [htv, hut], is a concatenation of the intermediate node
embeddings htv and hut . Eventually, the representations hv
and state st = [htv, hut] can be obtained.

4) Iteration-wise Optimization: We consider an iteration-
wise optimization approach to optimize the GDPNet model,
which optimizes the signal neighbor selection phrase and
representation learning phrase iteratively to learn the policy
πθ and the representations hv . As for representation learning
phase, it aggregates the information from the signal neighbors
selected by πθ to learn an embedding hv for target node v.
Meanwhile, the policy πθ is trained with the states calculated
by hv and the corresponding rewards. In this paper, πθ is

optimized with Proximal Policy Optimization (PPO), one of
the widely used policy gradient method [12].

max Es∼ρθold ,a∼q
[
πθ(a|s)
q(a|s)

Qθold(s, a)

]
, (8)

s.t. Es∼ρθold [DKL(πθold(·|s) ‖ πθ(·|s))] ≤ δ

where KullbackLeibler (KL) divergence penalty is used to
control the change of the policy at each iteration to perform
a trust region update with a threshold δ. q(a|s) and Qold =∑T
i=t γri are the policy and Q-value, respectively, which are

saved before the current time step during training. ρθold is the
discounted state distribution defined as,

ρθold(st) =

T∑
t=0

γt−1p(st = s|πθold) (9)

III. EXPERIMENT

Experiments are conducted to evaluate the robustness of
the representations learned by the proposed GDPNet model.
As for quantitative experiments, we focus on two tasks: (1)
Robustness Evaluation, we use micro-averaged F1 score to
evaluate our model against baselines on node classification
task, and (2) Denoising Evaluation, we evaluate the denoising
capability of GDPNet by comparing with baselines running
on the denoised graph generated by GDPNet. We extract four
datasets Cora, Citeseer, PubMed and DBLP followed by split-
ing them for training, test and validation with the supervised
learning scenario which follows the previous work [6], [8],
[9]. As for qualitative experiments, we conduct the embed-
ding visualization which projects the learned high-dimension
representations to a 2D space. In all these experiments, we
separate out test data from training and perform predictions
on nodes that are not seen during training.

A. Experimental Setup and Baselines

For all these tasks, we apply a two-layer policy network
to select the signal neighbors. The embedding dimension is
128. The size of the two hidden layers in policy network
are 64 and 36, respectively, with active function ReLU. The
batch size is 256. The discount factor is optimized as 0.95
for Cora and DBLP, 0.9 for PubMed and 1.0 for Citeseer.
We compare our method with the following baselines: (1)
Logistic regression (LR) model which takes the node features
as inputs, and ignores graph structure; (2) GCN [7] which
uses the local connection structure of the graph as the filter
to perform convolution. We use inductive version of GCN in
this paper for comparison; (3) GAT [9] which utilizes the
attention mechanism to enhance the performance of GCN;
(4) FastGCN [8]which samples the neighborhoods in each
layer independently to addresses the recursive expansion of
neighborhoods, and (5) GraphSAGE [6].

Our proposed model is denoted as GDPNet. We also
introduce a variant GDPNetRO which performs the signal
neighbor selection with a random order of the neighbors.

B. Performance Comparison

In this section, we first visualize the node representations
learned by different methods, followed by the performance
comparison on node classification task. Additionally, we show
the distributions of the selected signal neighbors with GDPNet
on different dataset.

1) Embedding Visualization: Node representations are
learned by GAT, GCN, GraphSAGE and GDPNet on test
dataset of Cora, and visualized with t-SNE [13], as shown
in Fig. 2. Different colors in the figure represent different
categories in Cora. The following observations can be made
from Fig. 2,
• GDPNet correctly detects the classes in Cora, providing

empirical evidence for the effectiveness of our method.
This can be seen by the clear gap between samples with
different colors. It also demonstrates that, removing the
noisy neighbors can help nodes learn better representa-
tions.

• GAT cannot effectively identify different classes as other
methods, it might because it considers all the neighbors
with attention weights, which is easily to introduce noisy
neighbors.

2) Results on Node Classification: In this part, we compare
the performance of GDPNet against the baselines on Cora,
Citeseer, PubMed and DBLP. For all methods, we run the
experiments with random seeds over 15 trials and record the
mean and standard variance of the micro-average F1 scores.
The results are summarized in Table I. From the table we
observe that,
• GDPNet consistently outperforms the other methods,

which demonstrates there exists a set of noisy neighbors
in each dataset on node classification task, and GDPNet
can learn robust embeddings by effectively removing
these noisy neighbors.

• GCN, FastGCN and GraphSAGE show lower F1 scores.
The reason is that these methods randomly sample a
subset of neighbors for representation learning, which is
hard to avoid the noisy neighbors. In addition, variance
is higher via random sampling.

• GAT learns the importance of the neighbors with attention
weights, which is also sensitive to noisy data according
to the reported results.

• Another interesting observation is that Logistic regression
achieves better performance than the other baselines on
PubMed, which indicates that there would be less signal
neighbors for the nodes in PubMed. This observation can
also be verified in Fig.3.

• GDPNetRO has a lower F1 score with higher variance
than GDPNet, which demonstrates that the order of the
decisions has an effect on the performance of representa-
tion learning. Thus learning an order for the neighbors is
beneficial for selecting signal neighbors and robust graph
representation learning.

3) Distribution of the Selected Neighbors: Fig. 3 shows
the distribution of the selected neighbor percentages, where

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cora-GDPNet

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Cora-GAT

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Cora-GCN

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Cora-GraphSAGE

Fig. 2. Visualizations of the compared methods on Cora.

TABLE I
SUMMARY OF NODE CLASSIFICATION RESULTS IN TERMS OF MICRO-AVERAGED F1 SCORE, FOR CORA, CITESEER, PUBMED AND DBLP

Method LR GAT GCN FastGCN GraphSAGE GDPNetRO GDPNet

Cora 0.799± 1.06% 0.819± 0.45% 0.838± 0.50% 0.865± 4.50% 0.867± 1.05% 0.879± 2.14% 0.881± 0.31%
PubMed 0.871± 0.82% 0.778± 0.71% 0.826± 0.22% 0.867± 1.05% 0.854± 0.87% 0.880± 2.51% 0.893± 0.57%
DBLP 0.784± 1.03% 0.736± 0.82% 0.805± 2.17% 0.774± 0.41% 0.803± 1.28% 0.832± 0.97% 0.836± 0.57%

Citeseer 0.813± 0.58% 0.719± 0.50% 0.829± 1.56% 0.779± 0.53% 0.910± 0.73% 0.952± 1.15% 0.957± 0.33%

0.0 0.5 1.0
0

1

2

3
Citeseer

0.0 0.5 1.0
0

1

2

3

4 PubMed

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25 Cora

0.0 0.5 1.0
0

1

2

3

4 DBLP

Percentage of selected signal neighbors

Pr
ob

ab
ilit

y
De

ns
ity

Fig. 3. The distribution of the selected signal neighbor percentages.

the x-axis indicates the percentage of the nodes been selected
as signal neighbors, and the y-axis indicates the probability
densities. We observe that most of the neighbors in Citeseer
and DBLP are selected while only a few neighbors are selected
in PubMed. The results show that there would be more “noisy”
citations (e.g. cross-field citation) in PubMed than in Citeseer
and DBLP. Interestingly, most of the research papers collected
in Citeseer and DBLP are from computer science, while
PubMed collects papers from biomedical.

4) Parameter Sensitivity Study: In Fig. 4, we vary the
training percentage of nodes in Citeseer and PubMed to test the
classification accuracy. We observe that, the performance of all
the methods are improved with the increases of the training
percentage. Additionally, it can be seen that GAT is very
sensitive to the percentages of training data, and it requires
larger proportion of training data in order to have a desirable
performance. GraphSAGE, GCN and GDPNet achieve good

performances on small training data, and GDPNet make more
improvements as the training data percentage increases.

5) Convergence Analysis: Fig. 5 shows the convergence
analysis of GDPNet on Citeseer and PubMed. We initialize the
policy randomly when epoch equals 0, and the neighbors are
randomly selected as signal neighbors. We observe that Cite-
seer converges faster than PubMed. One explanation would
be that PubMed has more nodes than Citeseer, which requires
more time to explore the policy for nodes.

IV. RELATED WORK

A. Graph Representation Learning
Graph representation learning tries to encode the graph

structure information into vector representations. The main
idea is to learn a mapping function from the nodes or entire
graphs into an embedding space where the geometric relation-
ships in the low-dimensional space coincide with the original
graph. The methods can be grouped into two categories: matrix
factorization based methods and graph neural network based
methods [1].

1) Graph Neural Network based Embedding: A set of
graph neural network based embedding methods are proposed
recently for representation learning [14]–[17]. GCN [7] first
proposes the first-order graph convolution layer to perform
recursive neighborhood aggregation based on the local connec-
tion. Instead of utilizing full graph Laplacian during training in
the GCN, GraphSAGE [6] considers the inductive setting to
handle the large scale graph with batch training and neigh-
borhood sampling. Followed by GraphSAGE, self-attention
mechanism has been explored to enhance the representation
learning performance [9], [18]. To accelerate the training of
GCNs, [8] samples the nodes in each layer independently,
while [19] samples the lower layer conditioned on the top one
and the sampled neighborhoods are shared by different parent
node. In this work, we propose to find an effective subset of
neighbors for learning robust representations.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of training data

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 S

co
re

Citeseer

GCN
GraphSAGE
LR
FastGCN
GAT
GDPNet

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of training data

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1
 S

co
re

PubMed

GCN
GraphSAGE
LR
FastGCN
GAT
GDPNet

Fig. 4. Performance on different percentage of training data

0 50 100 150 200 250 300 350
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Re
wa

rd

Citeseer
PubMed

Fig. 5. Convergence analysis

B. Reinforcement Learning on Graph

Reinforcement learning solves the sequential decision mak-
ing problem with the goal of maximizing cumulative rewards
of these decisions. A set of work used reinforcement learning
to solve the sequential decision making problems in graph,
such as minimum vertex cover, maximum cut and travelling
salesman problem [20], [21]. You et al. [22] considered the
molecular graph generation process as a sequential decision
making process where the reward function is designed by
non-differentiable rules. Dai et al. [23] utilized reinforcement
learning to learn an attack policy to make multiple decisions
(delete or add edges in the graph) to attack the graph.

V. CONCLUSION

In this paper, we developed a novel framework, GDPNet,
to learn robust representations from noisy graph data through
reinforcement learning. GDPNet includes two phases: signal
neighbor selection and representation learning. It learns a
policy to sequentially select the signal neighbors for each
node, and then aggregates the information from the selected
neighbors to learn node representations for the down-stream
tasks. These two learning phases are complementary and
achieves significant improvement. Experiments on a set of
well-studied datasets provide empirical evidence for our ana-
lytical results, and yield significant gains in performance over
state-of-the-art baselines.

ACKNOWLEDGEMENTS

This work was partially supported by NIH U01HG008488, NIH
R01GM115833, NIH U54GM114833, NSF IIS-1313606 and the
National Key Research and Development Program of China under
Grant No. 2016YFB1000904, NSFC (61702190, U1609220) and
Shanghai Chenguang Program (16CG24).

REFERENCES

[1] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[2] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9,
pp. 1616–1637, 2018.

[3] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, 2018.

[4] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[5] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph
neural networks: A review of methods and applications,” arXiv preprint
arXiv:1812.08434, 2018.

[6] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, pp. 1024–1034, 2017.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[8] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[9] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[10] W. Liu and I. Tsang, “On the optimality of classifier chain for multi-label
classification,” in NeurIPS, pp. 712–720, 2015.

[11] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functionsi,” Mathematical
programming, vol. 14, no. 1, pp. 265–294, 1978.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[13] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[14] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in ICLR, 2015.

[15] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in NeurIPS, pp. 2224–2232, 2015.

[16] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[17] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in ICML, pp. 2014–2023, 2016.

[18] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated
attention networks for learning on large and spatiotemporal graphs,”
arXiv preprint arXiv:1803.07294, 2018.

[19] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards
fast graph representation learning,” in NeurIPS, pp. 4558–4567, 2018.

[20] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning com-
binatorial optimization algorithms over graphs,” in NeurIPS, pp. 6348–
6358, 2017.

[21] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in ICLR, 2017.

[22] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolu-
tional policy network for goal-directed molecular graph generation,” in
NeurIPS, pp. 6410–6421, 2018.

[23] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in ICML, 2018.

