)

Check for
updates

Continuous Patient-Centric Sequence
Generation via Sequentially Coupled
Adversarial Learning

Lu Wang, Wei Zhang®™) | and Xiaofeng He®™)

School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China
joywanglulu@163.com, zhangwei.thu2011@gmail.com, xfhe@sei.ecnu.edu.cn

Abstract. Analyzing massive patient-centric Electronic Health Records
(EHRs) becomes a key to success for improving health care and treat-
ment. However, the amount of these data is limited and the access to
EHRs is difficult due to the issue of patient privacy. Thus high qual-
ity synthetic EHRs data is necessary to alleviate these issues. In this
paper, we propose a Sequentially Coupled Generative Adversarial Net-
work (SC-GAN) to generate continuous patient-centric data, including
patient state and medication dosage data. SC-GAN consists of two gen-
erators which coordinate the generation of patient state and medication
dosage in a unified model, revealing the clinical fact that the genera-
tion of patient state and medication dosage data have noticeable mutual
influence on each other. To verify the quality of the synthetic data, we
conduct comprehensive experiments to employ these data on real med-
ical tasks, showing that data generated from SC-GAN leads to better
performance than the data from other generative models.

Keywords: Continuous data - Patient-centric sequence -
Sequentially coupled adversarial learning

1 Introduction

The effective analysis of Electronic Health Records (EHRs) has the potential
to improve clinical outcomes. However, since data of EHRs largely consists of
personal medical information, it raises a significant privacy issue which discour-
ages the public sharing of these data. In addition, the amount of these data
is limited, because most of EHRs are self-governed by healthcare organizations
which require formal collaborations and complex data usage agreements for even
academic research purpose. Thus, the limited access to EHRs becomes the bot-
tlenecks of advancing the field of healthcare [1] and hinders the development of
medical data mining solutions.

Simulation is a standard practice for medical data generation and learn-
ing. Due to the complex hand-crafted rules of simulation design, automatically
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generating synthetic data becomes a fashion for relieving privacy risks and the
data scarcity issue [2,3]. Specifically, deep generative models have recently been
employed for releasing medical data mining [4,5]. The generated medical data
can be exploited for mitigating the risk of privacy and alleviate the data scarcity
issue by data augmentation.
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Fig.1. The records in MIMIC-III show three blood pressure measurements of two
sepsis patients and the vasopressors dosage prescribed to them, where vasopressors is
used to counteract sepsis-induced vasodilation and elevate arterial pressure. The left
patient who takes small dosage of vasopressors shows a declining blood pressure. The
right patient who takes larger dosage has a rising blood pressure.

Generative Adversarial Networks (GANSs) [6] train a generative model G
and a discriminative model D simultaneously with antagonistic objectives which
achieves promising results in generating realistic samples such as images [7-9],
text [10,11], etc. Only recently, a very few studies [4,5,12] apply GAN to syn-
thesize medical data generation. However, [4,5] focus on generating patient state
data, ignoring medication dosage data which is another crucial type of patient-
centric data. Although [12] enables the simultaneous generation of patient state
and corresponding medications, it could only generate discrete values at a spec-
ified time, unable to generate continuous sequential medical data which is more
in line with reality.

In this paper, we focus on the generation of continuous patient-centric
sequence, mainly including patient state and corresponding medication dosage
data, both of which play an important role in treatment recommendation [13,14].
The key observation is that the generation of patient state and medication dosage
data have significant mutual influence on each other. On one hand, doctors deter-
mine medication dosage mainly based on patients’ current state, leading to the
generation of medication dosage influenced by the generation of patient state. On
the other hand, the state of patients highly depend on the medication dosage
they take. For example, various fluids and vasopressor dosage strategies have
been proved to cause extreme variations in patient [15]. As shown in Fig. 1,
the blood pressures of sepsis patients are affected by the dosage of vasopressor
they take and the doctor also adjusts vasopressor dosage according to the blood
pressures.
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Inspired by the above observation, we propose a Sequentially Coupled GAN
(SC-GAN) model to generate the state of patients and medication dosage
together, which captures the interaction between them. Specifically, SC-GAN
consists of coupled generators: one is leveraged to first generate current state of
patients and the other further utilizes the acquired state to generate the cor-
responding medication dosage prescribed to each patient. As a result, the two
generators are directly associated and trained jointly in a unified model to benefit
each other.

Our main contributions are summarized as follows:

— We propose SC-GAN which consists of two interacted generators to produce
both the state of patients and the corresponding medication dosage. The
coupled generators capture the mutual influence of their generation, which
is overlooked by previous studies. In addition, we adopt a hybrid loss trick
which combines feature matching loss and standard generator loss to further
improve the performance.

— Experiments on public available real-world EHRs show the treatment rec-
ommendation model trained on the synthetic data generated by our model
achieves better performance than state-of-arts and incorporating the syn-
thetic data into the real datasets can further improve the performance.

2 Related Work

In this section, we overview the related studies from two aspects: sequentially
generative adversarial networks and medical data generation.

2.1 Sequentially Generative Adversarial Networks

Generative adversarial networks are generative models with the mechanism of
adversarial training, where the goal of D is to discriminate between real data
and the samples generated by G, and the goal of G is to fool D with generated
realistic data. Although GANs have achieved impressive success in image gen-
eration [16], there are limited studies using GANs to produce sequential data.
The most conventional methods with this regard are recurrent neural networks
(RNNs). RNNs have been utilized to generate sequential discrete tokens (e.g.,
machine translation [17]) and continuous values (e.g., music data [18,19]). The
most common objective for optimizing RNNs is based on maximum likelihood.
However, utilizing this criterion to generate sequence data has been argued to
suffer from the ezposure bias [20]. In contrast, GANs work well to mitigate this
problem. SeqGAN [10] extends GAN with RNN to generate sequences of discrete
word tokens via policy gradient. C-RNN-GAN [21] trains RNNs with adversarial
training for continuous music generation, which is a pioneering study to gener-
ate sequential and continuous data. Several methods also employ convolutional
neural networks (CNNs) for generating audios and images. Although using con-
volutional GANSs to generate sequential data may have faster training speed than
recurrent GANS, it loses the Markov property of trajectory samples.
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2.2 Medical Data Generation

The generated medical data helps to build predictive systems in the medi-
cal domain, such as predicting the patient-specific trajectories (e.g., Albumin,
Arterial pH, Calcium, etc.) or recommending treatments for a given patient.
Although the most commonly acceptable approach to generate EHRs dataset
for sharing is de-identification [22], the individual information of the patients
can be re-identified through residual distinguishable patterns [12]. For example,
re-identifying lab tests, demographics, and genomic variants. Generating syn-
thetic data becomes an alternative approach to reduce the privacy risk.

Followed by the successful applications of GANs mentioned above, a set of
studies begin to employ GANS to generate medical data for sharing. Li et al. [23]
proposed a hybrid GAN to generate text reports for medical image with high-
level and low-level modules. Most related to this work, Yahi et al. [5] utilized
RNNs with adversarial learning to generate the laboratory test time series data.
Nevertheless, it overlooks the fact that the patients’ state are highly influenced
by the medications they take. On the other hand, Beaulieu et al. [4] employed
the Auxiliary Classifier Generative Adversarial Network (AC-GAN) [9] to gen-
erate real-valued state of patient to provide a freely accessible public version for
discovery-oriented analysis. Esteban et al. [24] used a recurrent GAN to gen-
erate real-valued time-series state of patients, which also only considered the
generation of state as [9]. Edward et al. [12] combined autoencoder with GAN
to generate the discrete variables such as diagnosis, medication and procedure
codes. However, it only considers one-step generation instead of sequential gen-
eration.

To reflect the clinical fact, we propose SC-GAN to capture the interactions
between continuous state of patients and the medication dosage they take. Specif-
ically, SC-GAN designs coupled generators to produce the interdependent state
and medication dosage. Note that our proposed model is significantly different
from the Multi-Generator generative adversarial net [25] which utilizes multiple
generators to generate one single type of data.

3 Preliminaries

In this section, we first briefly introduce the data of continuous patient-centric
sequence and some basic notations, followed by the problem definition and the
description of GANs with its main variants.

3.1 Data Description and Notations

The major goal of this paper is to generate patient-centric medical sequence
data. Unlike previous studies [4,5,12], we focus on generating continuous values
with consideration of their mutual interactions. Generally, the numerical data
could be categorized into two aspects: (1) patient state data which includes lab
tests, vital signs, intake, etc; (2) medication dosage data.
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Since both patient state data and medication dosage data present sequential
characteristics, we assume s; denotes the state data of a patient at time step
t. Noting that to simplify the notations, we omit the subscript about a specific
patient and can apply these notations to different patients. Correspondingly,
we represent the medication dosage data as a;. For example, in the clinical
practice, doctors always design proper medication dosage for patients based on
their current state [13,26]. Meanwhile, patient state would vary after taking the
medication dosage.

Based on this intuition, we implement SC-GAN by ensuring that the current
state data s; is generated based on the previous state data s;_; and the medica-
tion dosage data a;_1, while in turn the medication dosage data a; is produced
based on the input of the current state s;.

3.2 Problem Definition
The detail of the problem studied in this paper is described in Problem 1.

Problem 1 [Continuous Patient-centric Sequence Generation]. For a
patient with given disease and medication, we aim at generating the sequen-
tial state S = {s1,S2, ..., s7} and corresponding dosage A = {ay, as,...,ar} with
the consideration of their mutual interactions.

3.3 Basics of GANs

Generative Adversarial Networks are generative models which consist of two
neural networks: Discriminator Net D(x;64) and Generator Net G(z;6,), where
z is a random noise. D(x) indicates the probability that x comes from a real data
distribution. To discriminate the real data from synthetic data, it maximizes the
probability of real data and minimizes the probability of synthetic data generated
from G. In contrast, G has the opposite goal which is to generate realistic data
to make D indistinguishable. That is, D and G play the following minimax game
to reach a Nash equilibrium:

mingmarpV (D, G) = Ex p,...x)[logD(x)]

+ Eqy. o llog(1 — D(G(z))] .
where pgqiq represents the distribution of real data. p,(z) denotes the distribu-
tion of noises where normal distribution N(0, 1) and uniform distribution ¢(0, 1)
are the common choices. D and G are iteratively optimized.

Unfortunately, if the discriminator D is excessively strong, then Eq.1 may
be unable to give sufficient gradient for G to update its parameters. Instead of
using the objective which maximizes the predicted probability of the discrimi-
nator, Salimans et al. proposed feature matching [27] which is a new strategy to
optimize G.

Feature matching aims at generating samples actually fall into the real data
manifold. It also encourages greater variance in G' as well as prevents it from



Continuous Patient-Centric Sequence Generation 41

overtraining on the current discriminator. Formally, the feature matching loss is
described as follows:

La = |Esnpara £(%) = Eonp. (0 F(G(2)II3 (2)

where f(x) is the representation of the last layer before the final classification of D.

Inspired by the above methodologies, we provide our SC-GAN model by
coupling two sequential generators in a unified generative adversarial network,
capturing the mutual interaction in continuous patient-centric medical sequence.

4 Methodology

4.1 Overview of SC-GAN

SC-GAN aims at generating synthetic patient-centric medical data which con-
sists of trajectory state data S (S = {s1, 2, ..., s7}) of patients and corresponding
medication dosage A (A = {aj,as,...,ar}) during treatment process. Specifi-
cally, the medication dosage data a; at time step t is generated based on the
current state data s; of a patient, and the current state s; is generated based
on the previous state data s;_; and previous medication dosage data a;_;. As
shown in Fig. 2, we establish two generators (G; and G5 for generating S and
A respectively, where a; is with the input of random noise z{, state s;, and s,
is with the input of random noise z;_,, a;—; and s;_;. In other words, the two
generators interact with each other to generate these two categories of data. To
implement the discriminator, we set a classification task to distinguish the real
and synthetic data at each time step.
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Fig. 2. The general framework of Sequentially Coupled GAN. This model consists
of three main components: a discriminator (a 2-layer bidirectional LSTM) and two
interdependent generators (two 2-layer LSTMs). s; indicates trajectory state of the
patients at time-point ¢. a; represents the medication dosage used for patients. z{ and
z; are random noises of the medication dosage and patient state respectively. The
correct symbol (v') indicates the discriminator determines the data is real while the
incorrect symbol (x) indicates the data is judged as synthetic.
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4.2 Coupled Generators

The goal of the coupled generators G; and G is to generate realistic synthetic
medical records of patients to maximize the probability of D for letting D make
a misjudgment. Both G; and G2 have two layers of long short-term memory
networks (LSTM) [28]. The reasons are that: (1) LSTM is capable of exhibiting
temporal dynamics compared to feed-forward networks and CNNs; (2) LSTM
utilizes three gates to protect and control the cell state, which mitigates the
gradient vanishing and exploding problems compared to RNNs.

G generates medicaiton dosage data (aj,as,...,ar) with the input of
sequential continuous state data (sg,si,...,s7—1) and a random noise sequence
(28,24, ...,2%_,). Formally, at each time step ¢, the input z{ of G; is the con-
catenation of s; and z{:

7 — [sii ], 3)
a = Gi(2}), (4)
where s, is the output of G2 at time step ¢ and z¢ € U4(0,1).

(5 is leveraged to generate the patient state data s; with the input of previous
state s;_1, the medication dosage data a;_1, and the current random noise z;.
In other words, at each time step of G2, the input z] at time step t is the
concatenation of s;_1, a;_1, and z;:

z; — [Se—1;a-1;2;], (5)

st—1 = Ga(2z{_), a1 = G1(z{_,), (6)
where s;_1 is the output of G5 at time step ¢t — 1, a;_ is the output of G; at
time step ¢ — 1, and 2¢ is also a uniform random value in [0,1].

As shown in Egs. 4 and 6, the outputs of G; and G» are also the inputs of G4
and G;. Combining these two generators together and differentiating different
patients, we minimize the following objective function to train these generators:

o=+ ZZlog (1 - D(G(z:0))) (™)

G(zi1) = [Gi(z,); Ga(2] )] (8)
where IV is the number of patients, T is the time length of the patient record.
That is, the optimal generator G should generate both realistic patient state
data and medication dosage data at the same time.

As for training, we first conduct a supervised pretraining step for SC-GAN.
To avoid training an excessively strong discriminator to hamper the genera-
tors optimization, we only pretrain the coupled generators by utilizing the least
square loss to generate the sample of the next time step. The objective function
for the pretraining step is defined as follows:

Lpretrain = f Z Z 'r‘eal z,t) H% (9)

+lajs! — Ga(2,)|3)
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real real

where s79* and a]$* indicate the real state and dosage data of patient ¢ at time
step t, respectlvely In the pretraining step, the coupled generators are with the
input of concatenation of the random noise and the real data from training set.

During adversarial training, the goal of generator G is to produce samples
which can cheat D. Thus G could map p.(z) to only a few and low-volume
regions. That is, G may produce the same synthetic data. This problem is called
mode collapse. To improve the variance of G and address the instability of GANs,
we combine the feature matching loss shown in Eq. 2 with the standard generator
loss through a weighted linear fusion, which is defined as follows:

Lo = WZZ(AM I£(sE7) — £(Gi (22)) 3

+ (@) - £(Ga(z))IB)
+ Aaa (log(1 = D(G(2i1)))))

(10)

where Af,, € [0,1] and Agay € [0,1] are the weights of feature matching loss
and standard generator loss, respectively, and they are tuned empirically based
on the test performance. f is the representation of the last layer before final
classification of D.

4.3 Discriminator

The goal of discriminator D(x) is to correctly judge the real data and the gen-
erated synthetic data. SC-GAN classifies the data into real or synthetic at each
time step, to simplify the procedure of directly discriminating the whole sequence
of data. Specifically, D is trained to minimize the negative cross-entropy loss
between the real sequential patient-centric records ([s1;a1], [s2; as], ..., [s7; ar])
and the generated data (G(z1),G(z2),...,G(zr)). D has a 2-layer bidirectional
LSTM, which could integrate the context in both directions. Finally, the loss of
the discriminator can be described as follows:

N T
Lp = —%% 2 ; (logD(xM) +log(1— D(G(zu)))) (11)
xit = [se;a¢], G(zi0) = [G1(2],); Ga(2] )] (12)

where x;; consists of the real state of patient ¢ and his/her medication dosage
data at time step t.

5 Experiments

In this section, we conduct extensive experiments on two distinct patient-centric
datasets extracted from real-world EHRs, aiming at demonstrating the data
generated by SC-GAN is better than those of several comparative models. The
source code will be released with the publication of this paper for relevant study.
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5.1 Dataset Description and Preprocessing

Patient Cohort. The experiments are conducted on a real-world EHRs, namely
the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-III v1.4)
database [29]. MIMIC-III encompasses a population of 43K patients and 474
million patient-centric state observations in intensive care units (ICUs) during
2001 and 2012. Based on MIMIC-III, we construct two distinct disease datasets:
sepsis and diabetes. Sepsis is a main cause of mortality in ICUs [13] and a
great deal of studies try to find optimal treatment dosage for sepsis. Diabetes
is a lifestyle-related chronic disease and glycemic control with proper dosage is
essential for diabetes [30].

We extract sepsis patients conforming to the Sepsis-3 criteria [31] and extract
diabetes, mycosis and isoniazid patients with ICD-9 codes for diabetes. We sum-
marize the basic statistics of the extracted patients in Table1l. We randomly
divide the dataset for training, validation, and testing sets by the proportion of
80:10:10.

Table 1. Basic statistics of the two datasets

Description Sepsis-3 | Diabetes | Mycosis | Isoniazid
% Female 43.6 32.1 44.8 41.9
Mean age 66.6 76.8 62.7 68.2
Hours in ICU 59.3 82.7 63.4 79.5
Total population | 13,773 |5,538 6,722 3,245

State of Patients. For each patient, we extract relevant physiological param-
eters as his/her state, such as laboratory tests, vital signs and output events.
The details of these features are shown in Table2. We aggregate the data into
windows of 4 h to obtain patient-centric multidimensional time series data. The
missing variables are imputed by k-nearest neighbors and the records with more
than 10 missing variables are removed. We rescale each feature at each time step
independently to the range [0, 1].

Medication Dosage of Patients. We select intravenous fluids (IV fluids) and
vasopressor as the main medications of sepsis patients and choose insulin for
diabetes patient. Because the dosage of these medications have been verified to
highly affect the state of diabetes patients and sepsis patients, and even their
mortality in ICU.
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Table 2. Description of the trajectory state of patients.

Laboratory tests | Albumin, Arterial_pH, Calcium, Glucose, Partial
Thromboplastin Time, Potassium, SGPT, Arterial Blood
Gas, Blood Urea Nitrogen, Chloride, International
Normalized Ratio, Sodium, Ionised Calcium, Arterial Lactate,
CO2, Creatinine, Prothrombin Time, SGOT Platelets Count,
Total bilirubin, White Blood Cell Count, Magnesium

Vital signs Diastolic Blood Pressure, PaCO2, Systolic Blood Pressure,
Pa0O2,Mean Blood Pressure, Fi02, PaOFiO2 ratio,
Respiratory Rate, Temperature (Celsius), SaO2, Heart Rate,
SpO2, Arterial BE

Output event Total Fluid Output

5.2 Models for Comparison

SeqGAN [10]: SeqGAN considers the sequence generation procedure as a
sequential decision making process, where the generator represents a rein-
forcement learning agent and the discriminator indicates an evaluator to
guide the generator. We replace the last layer of the generator to produce
continuous medical data.

C-RNN-GAN [21]: A method employs GANSs for generating sequential con-
tinuous music. It utilizes an LSTM to represent the generator and a bidirec-
tional LSTM as the discriminator. The discriminator performs classification
for each sequence.

RCGAN [5]: It has a similar architecture as C-RNN-GAN, except that the
outputs of the generator are not fed back into the inputs and the discriminator
conducts a discrimination at each time step of the sequence.

Imitation (RNIN): A RNN based model which has the same structure as the
generators of SC-GAN. It is also used as the pre-training process of SC-GAN.
SC-GAN: Proposed model, which generates the state and medication dosage
of the patients simultaneously. To reflect the clinical facts, SC-GAN uses cou-
pled generators to produce state and medication dosage respectively, where
two generators are interacted with each other.

SC-GAN (one G): A variant of SC-GAN, the state of patients and the
corresponding medication dosage are produced using one single generator
without interaction.

SC-GAN (A, = 0): A variant of SC-GAN, we set Af, = 0 and Aggy =1
in Eq. 10.

SC-GAN (Agay = 0): A variant of SC-GAN, we set Apy, =1 and Aggp = 0.

Although SeqGAN and C-RNN-GAN are not designed to generate medical

data, they are employed for generating sequential data which resembles our data
type and thus can be easily adapted to the medical domain.
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5.3 Quantitative Evaluation for Synthetic Data

It is challenging to evaluate the performance of GANs. Human judgment can be
a candidate choice, but it is impractical and costly especially for medical records.
We conduct both quantitative and qualitative analysis to evaluate the generated
data, such as dimension-wise probability [12], treatment recommendation task
evaluation, and Pearson correlations of real data and synthetic data [4], etc.

Dimension-Wise Probability. This metric is used to measure how the dis-
tribution of generated patient data matches the real data distribution. To be
specific, we discretize the values of the generated /real patient state features and
dosage with the window size of 0.1. Thus each feature or dosage has eleven value
slots (i.e., 0, 0.1, ..., 1). Then we calculate the probabilities of the occurrences
for each features in different slots. Take the i-th feature and m-th slot as an
example. Suppose the corresponding probability of real training data denoted as
Di,m and the value from synthetic or real test data denoted as p; ,,. We regard
(Pi,m»Pi,m) as a point with x-coordinate x = p; ,, and y-coordinate y = p; .
We collect all points regarding different datasets and plot them in Fig. 3. This
probability reflects the distribution of each value of the features and is a very
important statistical indicator. Intuitively, if more points appear near the line
x =y, it means the feature value distribution of p; ,, better matches the feature
value distribution of p; .

From the results, we can see SeqGAN has poor performance, where the distri-
bution of the generated values is significantly different from that of the real data.
C-RNN-GAN and RCGAN generate a set of values with high/low probability
while the corresponding probability of the true data is reverse. The dimension-
wise probability performance increases as we consider the dependence between
medication dosage and state (compared to C-RNN-GAN and RCGAN). SC-
GAN also shows better performance than Imitation, which demonstrates that
the adversarial learning mechanism (SC-GAN) could work better than maximum
likelihood mechanism (Imitation) in generating sequential clinical data.

Treatment Recommendation Task Evaluation. It is an important issue to
utilize large amount of medical records (e.g., EHRS) to improve the quality of
medical treatment especially to design proper dosage for patients [13,26]. In this
section, we conduct a treatment recommendation model which designs proper
medication dosage for patients to evaluate whether the synthetic data could be
used for real applications, inspired by [32] which has three layers with size 58,
58 and 5 and the activation function Relu. The input is patient state and the
output is the medication dosage class recommended for patients. It is trained on
synthetic data and tested on real data. Two distinct generated patient-centric
data: sepsis and diabetes datasets are utilized for the task. Following the previous
work, we discretized the dosage of medications into 5 medication space. Thus,
the number of treatment/dosage classes is five.

Table 3 shows the precision and AUROC of the recommendation results on
different synthetic data. True data indicates that the recommendation model is
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Fig. 3. Dimension-wise probability results. The top three figures, from left to right,
represent the performance of Imitation, SC-GAN and True data while the below are
SeqGAN, RCGAN and C-RNN-GAN. Different color corresponds to a feature of the
patient. The x-axis indicates the probability for the real training data, and y-axis
represents the probability for the synthetic test data or the real test data. The diagonal
line is the optimal performance where the training data and test data exactly match.
(Color figure online)

trained with true data and test on the true data. We randomly select 11,018 sep-
sis samples and 4,430 diabetes samples from generated data with same amount
as real data in the training step. SeqGAN shows poor performance because it is
designed for generating discrete data which may not be suitable for continuous
data. RCGAN also performs not very well due to the reason that the outputs
of its generator are not utilized as input for modeling. Imitation (RNN) and
C-rnn-gan perform better than RCGAN, showing the benefits of leveraging out-
puts from last time step as current input and using RNN for modeling sequence
data. SC-GAN outperforms the other baselines. The reason is that it considers
the mutual interactions between drug dosage and state of patients, which reflects
the clinical practice (compared with C-rnn-gan, RCGAN and SC-GAN (one)). It
also utilizes the adversarial training mechanism to generate more realistic data
and mitigate the exposure bias of maximum likelihood methods (compared with
Imitation). By integrating both the standard loss and feature matching loss,
SC-GAN achieves better performance (compared with SC-GAN (A4, = 0) and
SC-GAN (A = 0)).

Data Augmentation Test. In addition to only using synthetic data, we train
the treatment recommendation model on augmented dataset, where the syn-
thetic data and true data are combined with the ratio of 2 : 3. This experiment
is utilized to show whether the generated data can bring more information and
help alleviate the clinical data scarcity issue.
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Table 3. Precision and AUROC of treatment recommendation task while trained on

real data or synthetic data and testing on real data (%).

Methods Sepsis-3 Diabetes Mycosis Tuberculosis
IV fluids Vasopressor Insulin Fluconazole Isoniazid
Pre. | AUROC | Pre. | AUROC | Pre. | AUROC | Pre. | AUROC | Pre. | AUROC
True data 36.2 | 60.1 34.6 | 58.7 62.0 | 76.2 36.2 | 60.1 34.6 | 58.7
C-rnn-gan 26.8 | 53.3 24.1 | 52.6 53.4 | 71.3 24.4 | 51.8 23.1 | 51.2
SeqGAN 18.7 | 50.3 18.4 | 50.1 41.5 | 66.8 17.7 | 50.5 17.3 | 50.1
Imitation 27.1 | 53.7 25.3 | 52.8 54.1 | 71.8 25.3 | 52.5 24.0 | 51.4
(RNN)
RCGAN 25.6 | 52.6 23.5 | 51.3 51.9 | 70.3 24.1 | 51.6 22.8 | 50.9
SC-GAN 31.4|57.1 29.3 | 55.9 56.3 | 73.1 30.3 | 56.2 27.3 | 53.6
SC-GAN 29.9 | 56.2 27.9 | 54.1 52.9 | 72.2 28.2 | 55.1 24.7 | 52.3
(one G)
SC-GAN 29.3 | 56.1 27.3 | 53.6 52.8 | 72.0 28.0 | 54.9 24.3 | 52.1
(Xadv = 0)
SC-GAN 28.8 | 55.9 27.0 | 53.1 52.5 | 71.8 27.8 | 54.7 24.2 | 52.1
Afm =0)

As shown in Table 4, the data generated by SeqGAN and RCGAN seems to
make no contribution to the real data because results show no improvements
over those of only employing real data, showing no additional useful information
is generated. Imitation and C-rnn-gan behave better for their contribution to
improving recommendation performance. Finally, by adding the data generated
by SC-GAN, the recommendation model achieves significantly better results,
demonstrating the generated data indeed provide additional useful information
to complement true data and it is good for data augmentation.

Table 4. Precision and AUROC of medication dosage recommendation task trained
with both synthetic and real training data and tested on real data (%).

Methods Sepsis-3 Diabetes Mycosis Tuberculosis
IV fluids Vasopressor Insulin Fluconazole Isoniazid
Pre. | AUROC | Pre. | AUROC | Pre. | AUROC | Pre. | AUROC | Pre. | AUROC
True data 36.2 | 60.1 34.6 | 58.7 62.0 | 76.2 48.5 | 69.2 47.3 | 68.7
C-rnn-gan 36.9 | 60.4 33.4 | 58.1 62.9 | 76.6 36.6 | 63.7 32.4 | 61.3
SeqGAN 32.2 | 58.3 30.0 | 57.2 54.3 | 73.2 25.3 | 57.7 24.8 | 52.0
Imitation 37.3 | 60.7 34.8 | 59.2 63.2 | 76.9 36.5 | 64.8 33.6 | 61.6
(RNN)
RCGAN 35.4 | 59.7 33.2 | 58.0 61.4 | 76.3 36.1 | 63.4 32.3 | 61.1
SC-GAN 38.6 | 61.4 35.7 | 59.2 64.6 | 77.3 39.2 | 65.1 34.4 | 62.5
SC-GAN 37.1 | 60.7 33.8 |59.3 62.7 | 76.4 37.3 |62.5 32.1 | 61.3
(one G)
SC-GAN 36.5 | 59.8 33.1 | 58.6 61.8 | 76.0 37.1 162.3 31.8 | 61.2
(Xadv = 0)
SC-GAN 36.2 | 59.3 32.9 | 58.0 61.4 | 75.7 36.8 | 62.1 31.5 | 61.0
(Aym =0)
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5.4 Qualitative Evaluation for Synthetic Data

Pairwise Pearson Correlation. Following [4], we adopt Pearson correlation
coefficient (PCC) [33] to obtain Pearson correlation structures of feature pairs
for real data and synthetic data, respectively. The value of PCC ranges from +1
to —1, where 1 represents complete positive correlation, and —1 corresponds to
complete negative correlation. We select three features of the patients (systolic
blood pressure, spo2 and Arterial BE) and the dosage of Intravenous Fluids to
conduct Pearson correlation experiments. The Pearson correlation structures of
the real data is in Fig.4(a) and generated data is in Fig. 4(b).

As shown in Fig. 4, s, o, a, m represent systolic blood pressure, spO2, Arte-
rial BE and Intravenous Fluids respectively. The numbers 018 indicate the ICU
stay length (hour) of the sepsis patients. Here we only extract ten time steps for
comparison due to the space limitation. Both the synthetic data and real data
show the Intravenous Fluids has positive correlation with systolic blood pressure
and spo2. But for Arterial BE and Intravenous Fluids, the synthetic data shows
weaker correlation than the real data. The synthetic data generated by SC-GAN
shows a little different result compared to the true data. The main trends of the
results remain consistent.
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-0.50 -0.50
" .I
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(a) Real Data (b) Synthetic Data

Fig. 4. Pairwise Pearson correlation (PPC) between time series features.

Generated Patient-Centric Data. To conduct a qualitative evaluation for
synthetic data, we randomly select eight features generated by SC-GAN to intu-
itively compare the difference between them and the true data. We also invite
two clinicians to evaluate the results.

For most of the generated data, the clinicians could not judge they are syn-
thetic, except for paO2. This is because paO2 involves frequent variation. As
shown in Fig. 5, the trends of the generated features are not regular. Because
the state of these patients can change significantly as the time goes on. However,
the mean of these data could be concentrated. Figure 5 shows that the values of
different patient features vary in different regions. The synthetic data produced
by SC-GAN obtains the similar values regions as the true data.
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Fig. 5. Generated trajectory data lasting from initial visit to 19*4 h for specified
features (“t” indicates the true data and “s” indicates the synthetic data)

6 Conclusion

In this paper, we have proposed SC-GAN to generate sequential and continuous
medical data including the state of patients and the dosage of medications the
patients take. The main novelty of the model is the coupled generators which
coordinate the generation of patient state and medication dosage to capture the
mutual interactions between medications and patient state. The comprehensive
experiments on the real world EHRs dataset demonstrate the data generated
by SC-GAN can not only gain performance close to the real data on treatment
recommendation task, but also be useful for data augmentation.
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