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Background

Protein-RNA interaction is ubiquitous in cells and serves as the main mechanism for post-transcriptional
regulation. RNA binding proteins (RBPs) not only control which transcripts are translated, but also
determine the speed, location and concentration of mRNA translation, through controlling multiple layers
of gene regulation. Base-dominant interaction and backbone-dominant interaction categorize the two

main modes of the way RBPs interact with RNA.

There are mainly two approaches to understand protein-RNA interaction: experimental techniques and
computational methods (Table 1). The former includes high-throughput assays, such as in vitro (e.g.
RNAcompete) and in vivo (e.g. CLIP-HITS) assays, and structural biology approach. However, both
technologies have clear limitations: the assay experiments can reveal statistical patterns (e.g. sequence
logos) of the binding RNAs to an RBP, but cannot elucidate where and how the RNA interacts with the
RBP, whereas the structural biology approach can only capture a snapshot of a specified RNA binding to
the RBP, without revealing any statistical property. The computational approach, on the other hand, is

still at the early development stage. All the existing machine learning (ML)-based methods try to make
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binary predictions. That is, the state-of-the-art resolution is on predicting if a residue of an RBP is a
binding residue or not. Such methods often have high false positive rates, even for known RBPs. For a
previously unknown RBP, the predictions from the existing ML-based methods and docking-based
methods are even less reliable, which hamper their applications in guiding the downstream experimental

design.

Table 1. Summary of the properties of different experimental and computational techniques to study protein-RNA

interaction. ‘Y’, ‘N’, and ‘P’ stand for having, not-having, and partially-having the corresponding property,

respectively.
Property Assay | Structural Biology = ML methods Docking methods NucleicNet
Structural information N Y N Y Y

Sequence logo

Binary prediction

RNA constituent prediction
Ability to rank RNA

Ability to identify new RBP

< <z =z <
zZvzz=z2z=
zZ <z < <

N
P
P
Y
P

< < < =< =<

NucleicNet — RNA-constituent level predictor of protein-RNA interaction through deep learning

The new tool, NucleicNet [1], developed by Gao Lab'at King Abdullah University of Science and
Technology (KAUST), in collaboration with groups in China and USA, is first-of-its-kind to predict
protein-RNA interactions at the RNA-constituent resolution. They formulated the problem as a seven
class classification problem, where the label space includes non-site, ribose, phosphate, and four different

bases.

For any deep learning approach, data is the most critical component. They composed a dataset that
contains all the solved protein-RNA complex structures in the Protein Data Bank (PDB), and carefully
removed the redundant structures and redundant chains, which resulted in a stringent dataset of 175 RNA-
binding protein chains. The surface grid points are extracted and the labels are assigned to the grid points

by considering the nearest RNA constituents or assigned 0 if the grid point is outside the bound RNA.

! http://sfb.kaust.edu.sa
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The FEATURE framework is applied on a contour-manner to extract spatial, physicochemical properties
of the local protein surface environment. A 16 level residual network is trained to learn the mapping
between the input features to the seven classes. To optimize the problem in a more efficient way, they
applied a number of techniques, such as down-sampling of the negative set, hierarchical classification,

batch normalization, and weight decay.

The authors tested NucleicNet on various tasks, starting from the traditional binary classification, i.e., to
predict if a surface residue is an RNA binding residue or not. Although NucleicNet was trained on the 7-
class classification task, when rounding the prediction results to binding/nonbinding, it can still
outperform all the sequence-based predictors by a large margin. They then evaluated 7-class classification
performance, to which there is no precedent method to compare, through both micro- and macro-

performance measures, where ‘micro’ is sample-averaged and ‘macro’ is class-averaged.

In addition to statistical evaluation, they showed three case studies to demonstrate NucleicNet’s power in
revealing complex spatial patterns: Fem-3-binding-factor 2 (FBF2) which binds RNA through base
contacts, Human Argonaute 2 (hAgo2) which binds RNA through backbone, and Aquifex aeolicus
Ribonuclease 111 (Aa-RNase III) which binds to double-stranded RNA. For FBF2 (Fig. 1(a)), NucleicNet
successfully recovered the strong UGUR motif. Interestingly, NucleicNet captures the modest preference
for A or U at base 9, which is consistent with recent reports [2][3], while the complex structure solved in
PDB has C at that base. This indicates that NucleicNet can really capture the physicochemical
mechanisms in protein-RNA interaction through mining from big structural biology data. For both hAgo2
(Fig. 1(b)) and Aa-RNase III (Fig. 1(c)), NucleicNet was able to capture well-known patterns, as well as
recently reported patterns. In all three cases, NucleicNet correctly predicted the binding pockets on the
protein surface in an unbiased way, which demonstrates its ability to predict novel RBPs and their binding

pockets.

They further validated NucleicNet on in vitro and in vivo assay data. On the in vitro RNACompete

datasets, NucleicNet scores on different binding RNA sequences showed a remarkable level of agreement
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with the RNACompete position weight matrix scores. NucleicNet was also able to differentiate top
scoring sequences from the bottom scoring ones. On the in vivo Ago2 immunoprecipitation and siRNA
knockdown datasets from different cell lines of both human and mouse, NucleicNet could correctly
predict asymmetry in guide strand loading for majority of the cases. These results become even more
significant when considering the fact that NucleicNet was never trained on any assay data, and yet it

reached a remarkable level of consistency with such high-throughput experiments.

Figure 1. The three case studies from [1]. (a) Fem-3-binding-factor 2 (FBF2) which binds RNA through base
contacts; (b) Human Argonaute 2 (hAgo2) which binds RNA through backbone; and (c) Aquifex aeolicus
Ribonuclease III (Aa-RNase III) which binds to double-stranded RNA. Upper panel: NucleicNet predictions for
query RBPs. Middle panel: detailed view on chemical interactions. Lower panel: predicted sequence logo diagrams

for respective RBPs.
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In the case of known RBPs, NucleicNet can be applied to score any given binding RNA sequence, design
the most preferred binding sequence, and draw sequence logos. In the case of proteins with unknown
RNA binding functions, NucleicNet can be applied to check if the protein has a proper RNA binding site,
and if so, what the preferred binding RNA sequences are. They further provided a webserver to the

community to use NucleicNet.

Discussion

The experiments demonstrated NucleicNet’s ability to capture both the statistical and physicochemical
properties underlying protein-RNA interactions. The deep learning model clearly does much more than
‘memorizing’ the training data. NucleicNet can be potentially applied to understand the binding
mechanism and design RNAs for some important RBPs, such as argonaute-2, m6A-responsive RBPs, and

RBPs for sgRNA in the CRISPR-Cas9 system.

Despite the success of NucleicNet, there are two future directions. First, NucleicNet does not consider the
conformational change caused by protein-RNA interaction. Thus the input apo structure may undergo a
large-scale conformational change to accommodate the binding of the RNA, which will cause the
extracted physicochemical features to be imprecise. Second, the idea of NucleicNet can be naturally
transferred to modeling other interactions, such as protein-DNA interaction, protein-drug interaction, and

protein-ligand binding. Finally, some ablation study might help simplify the network.
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