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Background 15 

Protein-RNA interaction is ubiquitous in cells and serves as the main mechanism for post-transcriptional 16 

regulation. RNA binding proteins (RBPs) not only control which transcripts are translated, but also 17 

determine the speed, location and concentration of mRNA translation, through controlling multiple layers 18 

of gene regulation. Base-dominant interaction and backbone-dominant interaction categorize the two 19 

main modes of the way RBPs interact with RNA.  20 

There are mainly two approaches to understand protein-RNA interaction: experimental techniques and 21 

computational methods (Table 1). The former includes high-throughput assays, such as in vitro (e.g. 22 

RNAcompete) and in vivo (e.g. CLIP-HITS) assays, and structural biology approach. However, both 23 

technologies have clear limitations: the assay experiments can reveal statistical patterns (e.g. sequence 24 

logos) of the binding RNAs to an RBP, but cannot elucidate where and how the RNA interacts with the 25 

RBP, whereas the structural biology approach can only capture a snapshot of a specified RNA binding to 26 

the RBP, without revealing any statistical property. The computational approach, on the other hand, is 27 

still at the early development stage. All the existing machine learning (ML)-based methods try to make 28 



 
  

binary predictions. That is, the state-of-the-art resolution is on predicting if a residue of an RBP is a 29 

binding residue or not. Such methods often have high false positive rates, even for known RBPs. For a 30 

previously unknown RBP, the predictions from the existing ML-based methods and docking-based 31 

methods are even less reliable, which hamper their applications in guiding the downstream experimental 32 

design.  33 

Table 1. Summary of the properties of different experimental and computational techniques to study protein-RNA 34 

interaction. ‘Y’, ‘N’, and ‘P’ stand for having, not-having, and partially-having the corresponding property, 35 

respectively.  36 

Property	
   Assay	
   Structural	
  Biology	
   ML	
  methods	
   Docking	
  methods	
   NucleicNet	
  
Structural	
  information	
   N	
   Y	
   N	
   Y	
   Y	
  
Sequence	
  logo	
   Y	
   N	
   Y	
   N	
   Y	
  
Binary	
  prediction	
   N	
   N	
   Y	
   P	
   Y	
  
RNA	
  constituent	
  prediction	
   N	
   N	
   N	
   P	
   Y	
  
Ability	
  to	
  rank	
  RNA	
   Y	
   P	
   Y	
   Y	
   Y	
  
Ability	
  to	
  identify	
  new	
  RBP	
  	
   Y	
   N	
   N	
   P	
   Y	
  

 37 

NucleicNet – RNA-constituent level predictor of protein-RNA interaction through deep learning 38 

The new tool, NucleicNet [1], developed by Gao Lab1 at King Abdullah University of Science and 39 

Technology (KAUST), in collaboration with groups in China and USA, is first-of-its-kind to predict 40 

protein-RNA interactions at the RNA-constituent resolution. They formulated the problem as a seven 41 

class classification problem, where the label space includes non-site, ribose, phosphate, and four different 42 

bases.  43 

For any deep learning approach, data is the most critical component. They composed a dataset that 44 

contains all the solved protein-RNA complex structures in the Protein Data Bank (PDB), and carefully 45 

removed the redundant structures and redundant chains, which resulted in a stringent dataset of 175 RNA-46 

binding protein chains. The surface grid points are extracted and the labels are assigned to the grid points 47 

by considering the nearest RNA constituents or assigned 0 if the grid point is outside the bound RNA. 48 
                                                
1 http://sfb.kaust.edu.sa  



 
  

The FEATURE framework is applied on a contour-manner to extract spatial, physicochemical properties 49 

of the local protein surface environment. A 16 level residual network is trained to learn the mapping 50 

between the input features to the seven classes. To optimize the problem in a more efficient way, they 51 

applied a number of techniques, such as down-sampling of the negative set, hierarchical classification, 52 

batch normalization, and weight decay.  53 

The authors tested NucleicNet on various tasks, starting from the traditional binary classification, i.e., to 54 

predict if a surface residue is an RNA binding residue or not. Although NucleicNet was trained on the 7-55 

class classification task, when rounding the prediction results to binding/nonbinding, it can still 56 

outperform all the sequence-based predictors by a large margin. They then evaluated 7-class classification 57 

performance, to which there is no precedent method to compare, through both micro- and macro-58 

performance measures, where ‘micro’ is sample-averaged and ‘macro’ is class-averaged.  59 

In addition to statistical evaluation, they showed three case studies to demonstrate NucleicNet’s power in 60 

revealing complex spatial patterns: Fem-3-binding-factor 2 (FBF2) which binds RNA through base 61 

contacts, Human Argonaute 2 (hAgo2) which binds RNA through backbone, and Aquifex aeolicus 62 

Ribonuclease III (Aa-RNase III) which binds to double-stranded RNA. For FBF2 (Fig. 1(a)), NucleicNet 63 

successfully recovered the strong UGUR motif. Interestingly, NucleicNet captures the modest preference 64 

for A or U at base 9, which is consistent with recent reports [2][3], while the complex structure solved in 65 

PDB has C at that base. This indicates that NucleicNet can really capture the physicochemical 66 

mechanisms in protein-RNA interaction through mining from big structural biology data. For both hAgo2 67 

(Fig. 1(b)) and Aa-RNase III (Fig. 1(c)), NucleicNet was able to capture well-known patterns, as well as 68 

recently reported patterns. In all three cases, NucleicNet correctly predicted the binding pockets on the 69 

protein surface in an unbiased way, which demonstrates its ability to predict novel RBPs and their binding 70 

pockets.  71 

They further validated NucleicNet on in vitro and in vivo assay data. On the in vitro RNACompete 72 

datasets, NucleicNet scores on different binding RNA sequences showed a remarkable level of agreement 73 



 
  

with the RNACompete position weight matrix scores. NucleicNet was also able to differentiate top 74 

scoring sequences from the bottom scoring ones. On the in vivo Ago2 immunoprecipitation and siRNA 75 

knockdown datasets from different cell lines of both human and mouse, NucleicNet could correctly 76 

predict asymmetry in guide strand loading for majority of the cases. These results become even more 77 

significant when considering the fact that NucleicNet was never trained on any assay data, and yet it 78 

reached a remarkable level of consistency with such high-throughput experiments.  79 

 80 

Figure 1. The three case studies from [1]. (a) Fem-3-binding-factor 2 (FBF2) which binds RNA through base 81 

contacts; (b) Human Argonaute 2 (hAgo2) which binds RNA through backbone; and (c) Aquifex aeolicus 82 

Ribonuclease III (Aa-RNase III) which binds to double-stranded RNA. Upper panel: NucleicNet predictions for 83 

query RBPs. Middle panel: detailed view on chemical interactions. Lower panel: predicted sequence logo diagrams 84 

for respective RBPs. 85 

 86 



 
  

In the case of known RBPs, NucleicNet can be applied to score any given binding RNA sequence, design 87 

the most preferred binding sequence, and draw sequence logos. In the case of proteins with unknown 88 

RNA binding functions, NucleicNet can be applied to check if the protein has a proper RNA binding site, 89 

and if so, what the preferred binding RNA sequences are. They further provided a webserver to the 90 

community to use NucleicNet.  91 

 92 

Discussion 93 

The experiments demonstrated NucleicNet’s ability to capture both the statistical and physicochemical 94 

properties underlying protein-RNA interactions. The deep learning model clearly does much more than 95 

‘memorizing’ the training data. NucleicNet can be potentially applied to understand the binding 96 

mechanism and design RNAs for some important RBPs, such as argonaute-2, m6A-responsive RBPs, and 97 

RBPs for sgRNA in the CRISPR-Cas9 system.  98 

Despite the success of NucleicNet, there are two future directions. First, NucleicNet does not consider the 99 

conformational change caused by protein-RNA interaction. Thus the input apo structure may undergo a 100 

large-scale conformational change to accommodate the binding of the RNA, which will cause the 101 

extracted physicochemical features to be imprecise. Second, the idea of NucleicNet can be naturally 102 

transferred to modeling other interactions, such as protein-DNA interaction, protein-drug interaction, and 103 

protein-ligand binding. Finally, some ablation study might help simplify the network. 104 
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