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This paper presents an efficient method for mining both positive and negative association rules
in databases. The method extends traditional associations to include association rules of forms
A ⇒ ¬B, ¬A ⇒ B, and ¬A ⇒ ¬B, which indicate negative associations between itemsets. With
a pruning strategy and an interestingness measure, our method scales to large databases. The
method has been evaluated using both synthetic and real-world databases, and our experimental
results demonstrate its effectiveness and efficiency.
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1. INTRODUCTION

By definition [Agrawal et al. 1993b; Chen et al. 1996], an association rule is
an implication of the form A ⇒ B, where A and B are frequent itemsets in a
transaction database and A ∩ B = ∅. In practical applications, the rule A ⇒ B
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can be used to predict that ‘if A occurs in a transaction, then B will likely
also occur in the same transaction’, and we can apply this association rule to
place ‘B close to A’ in the store layout and product placement of supermarket
management. Such applications are expected to increase product sales and
provide more convenience for supermarket customers. Therefore, mining as-
sociation rules in databases has received much attention recently [Aggarawal
and Yu 1998; Agrawal et al. 1993a, 1993b; Bayardo 1998; Brin et al. 1997; Chen
et al. 1996; Han et al. 2000; Park et al. 1997; Shintani and Kitsuregawa 1998;
Srikant and Agrawal 1996, 1997; Tsur et al. 1998].

With the increasing use and development of data mining techniques and
tools, much work has recently focused on finding alternative patterns, includ-
ing unexpected patterns [Padmanabhan and Tuzhilin 1998, 2000], exceptional
patterns [Hussain et al. 2000; Hwang et al. 1999; Liu et al. 1999; Suzuki 1997;
Suzuki and Shimura 1996], and strong negative associations [Brin et al. 1997;
Savasere et al. 1998].

Unexpected patterns and exceptional patterns are referred to as exceptions
of rules, also known as surprising patterns. An exception is defined as a de-
viational pattern to a well-known fact, and exhibits unexpectedness. For ex-
ample, while ‘bird(x) ⇒ flies(x)’ is a well-known fact, an exceptional rule is
‘bird(x), penguin(x) ⇒ ¬flies(x)’. This exception indicates that unexpected pat-
terns and exceptional patterns can involve negative terms and therefore can be
treated as a special case of negative rules.

A strong negative association is referred to as a negative relation between two
itemsets. This negative relation implies a negative rule between the two item-
sets. However, strong negative associations reveal only the existence of negative
rules in a hidden representation, and do not provide the actual negative rules.

Unlike existing mining techniques, the research in this paper extends tradi-
tional associations to include association rules of forms A ⇒ ¬B, ¬A ⇒ B, and
¬A ⇒ ¬B, which indicate negative associations between itemsets. We call rules
of the form A ⇒ B positive rules, and rules of the other forms negative rules.

While positive association rules are useful in decision-making, negative as-
sociation rules also play important roles in decision-making. For example, there
are typically two types of trading behaviors (insider trading and market manip-
ulation) that impair fair and efficient trading in securities stock markets. The
objective of the market surveillance team is to ensure a fair and efficient trading
environment for all participants through an alert system. Negative association
rules assist in determining which alerts can be ignored. Assume that each piece
of evidence: A, B, C and D, can cause an alert of unfair trading X . If having
rules A ⇒ ¬X and C ⇒ ¬X , the team can make the decision of fair trading
when A or C occurs, in other words, alerts caused by A or C can be ignored. This
example provides an insight into the importance of negative association rule
mining. On the other hand, the development of negative association rule mining
will allow companies to hunt more business chances—through using infrequent
itemsets of interest—than those that only take into account frequent itemsets.

Mining negative association rules is a difficult task, due to the fact that there
are essential differences between positive and negative association rule mining.
We illustrate this using an example as follows.
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Example 1. Consider a database TD = {(A, B, D); (B, C, D); (B, D); (B, C,
D, E); (A, B, D, F )}, which has 5 transactions, separated by semicolons. Each
transaction contains several items, separated by commas.

For this database, negative association rules can be generated from 49 in-
frequent itemsets:

AC, AE, AF, BE, BF, CE, CF, DE, DF, EF, ABC, ABE, ABF, ACD, ACE,
ACF, ADE, ADF, AEF, BCE, BCF, BDE, BDF, BEF, CDE, CDF, CEF,
DEF, ABCD, ABCE, ABCF, ABDE, ABDF, ABEF, ACDE, ACDF,
ACEF, ADEF, BCDE, BCDF, BDEF, CDEF,
ABCDE, ABCDF, ABCEF, ABDEF, ACDEF, BCDEF, ABCDEF.

There are at least 110 possible negative rules from the infrequent itemset
ABCDEF only, and there are at least 818 possible negative association rules
from the 49 infrequent itemsets.

The above observations have shown that we must search a huge amount (at
least 818) of negative association rules although the database is rather small.
It would be difficult for a user to browse negative rules when the database is
larger. In particular, it is a challenge to identify which of the rules are really
useful to applications.

We will attack two key problems in negative association rule mining: (i) how
to effectively search for interesting itemsets, and (ii) how to effectively identify
negative association rules of interest. The rest of this paper is organized as
follows. In the next section, we present some related concepts and definitions.
We design a procedure for identifying both frequent and infrequent itemsets of
interest in Section 3. In Section 4, we construct a model for measuring positive
and negative association rules. Section 5 reviews related work, and Section 6
presents our experimental results.

2. PRELIMINARIES

Let I = {i1, i2, . . . , iN } be a set of N distinct literals called items. D is a set of
variable length transactions over I . Each transaction contains a set of items
i1, i2, . . . , ik ∈ I . A transaction has an associated unique identifier called TID.
An association rule is an implication of the form A ⇒ B (or written as A → B),
where A, B ⊂ I , and A ∩ B = ∅. A is called the antecedent of the rule, and B is
called the consequent of the rule.

In general, a set of items (such as the antecedent or the consequent of a rule)
is called an itemset. For simplicity, an itemset {i1, i2, i3} is sometimes written as
i1i2i3.

The number of items in an itemset is the length (or the size) of an itemset.
Itemsets of length k are referred to as k-itemsets. For an itemset A · B, if B is
an m-itemset then B is called an m-extension of A.

Each itemset has an associated statistical measure called support, denoted
as supp. For an itemset A ⊂ I , supp(A) = s, if the fraction of transactions in D
containing A equals s.
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An association rule A ⇒ B has a measure of its strength called confidence
(denoted as conf) defined as the ratio supp(A∪ B)/supp(A), where A∪ B means
that both A and B are present.

Association rule discovery seeks rules of the form A ⇒ B with support and
confidence greater than, or equal to, user-specified minimum support (ms) and
minimum confidence (mc) thresholds respectively, where

— A and B are disjoint itemsets, that is, A ∩ B = ∅;
—supp(A ⇒ B) = supp(A ∪ B); and
—conf(A ⇒ B) = supp(A ∪ B)/supp(A).

This is referred to as the support-confidence framework [Agrawal et al.
1993b]1 and the rule A ⇒ B is an interesting positive rule. Association analysis
can be decomposed into the following two issues:

(1) Generate all large itemsets: All itemsets that have a support greater than
or equal to the user specified minimum support are generated.

(2) Generate all the rules that have a minimum confidence in the following
naive way: For every large itemset X and any B ⊂ X , let A= X − B. If the
rule A ⇒ B has the minimum confidence (or supp(X )/supp(A) ≥ mc), then
it is a valid rule.

A frequent itemset (also called large itemset [Chen et al. 1996]) is an item-
set that meets the user-specified minimum support. Accordingly, we define an
infrequent itemset (or small itemset) as an itemset that does not meet the user-
specified minimum support.

The negation of an itemset A is indicated by ¬A. The support of ¬A,
supp(¬A) = 1 − supp(A). In particular, for an itemset i1¬i2i3, its support is
supp(i1¬i2i3) = supp(i1i3) − supp(i1i2i3).

We call a rule of the form A ⇒ B a positive rule, and rules of the other forms
(A ⇒ ¬B, ¬A ⇒ B and ¬A ⇒ ¬B) negative rules. For convenience, we often
use only the form A ⇒ ¬B to represent and describe negative association rules
in this paper.

Like positive rules, a negative rule A ⇒ ¬B also has a measure of its
strength, conf, defined as the ratio supp(A ∪ ¬B)/supp(A).

By extending the definition in [Agrawal et al. 1993b and Chen et al. 1996],
negative association rule discovery seeks rules of the form A ⇒ ¬B with their
support and confidence greater than, or equal to, user-specified minimum sup-
port and minimum confidence thresholds respectively, where

— A and B are disjoint itemsets, that is, A ∩ B = ∅;
—supp(A) ≥ ms, supp(B) ≥ ms and supp(A ∪ B) < ms;
—supp(A ⇒ ¬B) = supp(A ∪ ¬B);
—conf(A ⇒ ¬B) = supp(A ∪ ¬B)/supp(A) ≥ mc.

The rule A ⇒ ¬B is referred to as an interesting negative rule.

1There are also other ways, such as the FT-tree method [Han et al. 2000], that can find association
rules.
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Example 2. (Adapted from Brin et al. [1997].) Suppose we have a market
basket database from a grocery store, consisting of n baskets. Let us focus on
the purchase of tea (denoted by t) and coffee (denoted by c).

When supp(t) = 0.25 and supp(t ∪ c) = 0.2, we can apply the support-
confidence framework for a potential association rule t ⇒ c. The support for this
rule is 0.2, which is fairly high. The confidence is the conditional probability that
a customer who buys tea also buys coffee: conf(t ⇒ c) = supp(t ∪ c)/supp(t) =
0.2/0.25 = 0.8, which is very high. In this case, we would conclude that the rule
t ⇒ c is a valid one.

Now consider supp(c) = 0.6, supp(t) = 0.4, supp(t ∪c) = 0.05, and mc = 0.52.
The confidence of t ⇒ c is supp[t ∪ c]/supp[t] = 0.05/0.4 = 0.125 < mc =
0.52 and, supp(t ∪ c) = 0.05 is low. This indicates that t ∪ c is an infrequent
itemset and that, t ⇒ c cannot be extracted as a rule in the support-confidence
framework. However, supp[t ∪¬c] = supp[t] − supp[t ∪ c] = 0.4 − 0.05 = 0.35 is
high, and the confidence of t ⇒ ¬c is the ratio supp[t∪¬c]/supp[t] = 0.35/0.4 =
0.875 > mc. Therefore t ⇒ ¬c is a valid rule from the database.

3. IDENTIFYING INTERESTING ITEMSETS

As we have seen, there can be an exponential number of infrequent itemsets in
a database, and only some of them are useful for mining association rules of in-
terest. Therefore, pruning is critical to efficient search for interesting itemsets.
In this section, we design a pruning strategy, and a procedure for identifying
positive and negative itemsets of interest.

3.1 A Pruning Strategy

Piatetsky-Shapiro [1991] argued that a rule X ⇒ Y is not interesting if

supp(X ∪ Y ) ≈ supp(X ) × supp(Y ). (1)

One interpretation of this proposition is that a rule is not interesting if its
antecedent and consequent are approximately independent. To operational-
ize this concept, we can define an interestingness function interest(X , Y ) =
|supp(X ∪ Y ) − supp(X )supp(Y )| and a threshold mi (minimum interesting-
ness). If interest(X , Y ) ≥ mi, the rule X ⇒ Y is of potential interest, and X ∪Y
is referred to as a potentially interesting itemset. Using this approach, we
can establish an effective pruning strategy for efficiently identifying all fre-
quent itemsets of potential interest in a database.

Integrating this interest(X , Y ) mechanism into the support-confidence
framework, I is a frequent itemset of potential interest if:

fipi(I ) = supp(I ) ≥ ms ∧
∃X , Y : X ∪ Y = I ∧
fipis(X , Y ) (2)

where

fipis(X , Y ) = X ∩ Y = ∅ ∧
f (X , Y , ms, mc, mi) = 1 (3)
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f (X , Y , ms, mc, mi)

= supp(X ∪ Y ) + conf(X ⇒ Y ) + interest(X , Y ) − (ms + mc + mi) + 1
|supp(X ∪ Y ) − ms| + |conf(X ⇒ Y ) − mc| + |interest(X , Y ) − mi| + 1

where f () is a constraint function concerning the support, confidence, and in-
terestingness of X ⇒ Y .

On the other hand, to mine negative association rules, all itemsets for pos-
sible negative association rules in a given database need to be considered. For
example, if A ⇒ ¬B can be discovered as a valid rule, then supp(A ∪ ¬B) ≥ ms
must hold. If the ms is high, supp(A∪¬B) ≥ ms would mean that supp(A∪ B) <

ms, and itemset A ∪ B cannot be generated as a frequent itemset in existing
association analysis algorithms. In other words, A∪ B is an infrequent itemset.
However, there are too many infrequent itemsets in a large database, and we
must define some conditions for identifying infrequent itemsets of interest.

If A is a frequent itemset and B is an infrequent itemset with a frequency
of 1 in a large database, then A ⇒ ¬B certainly looks like a valid negative
rule, because supp(A) ≥ ms, supp(B) ≈ 0, supp(A ∪ ¬B) ≈ supp(A) ≥ ms,
conf(A ⇒ ¬B) = supp(A ∪ ¬B)/supp(A) ≈ 1 ≥ mc. This could indicate that the
rule A ⇒ ¬B is valid, and the number of this type of itemsets in a given database
can be very large. For example, rarely purchased products in a supermarket are
always infrequent itemsets.

However, in practice, more attention is paid to frequent itemsets, and any
patterns mined in a database would mostly involve frequent itemsets only. This
means that if A ⇒ ¬B (or ¬A ⇒ B, or ¬A ⇒ ¬B) is a negative rule of interest, A
and B would be frequent itemsets.2 In particular, as Example 1 has illustrated
the difficulty of mining negative association rules, in this paper we focus on
identifying the associations among frequent itemsets. To operationalize this
insight, we can use the support measure supp. If supp(X ) ≥ ms and supp(Y ) ≥
ms, the rule X ⇒ ¬Y is of potential interest, and X ∪ Y is referred to as a
potentially interesting itemset.

Integrating the above insight and the interest(X , Y ) mechanism into the
support-confidence framework, J is an infrequent itemset of potential interest
if:

iipis(J ) = supp(J ) < ms ∧
∃X , Y : X ∪ Y = J ∧
iipis(X , Y ) (4)

2This is a heuristic we have adopted in our method. This heuristic does not examine all possible
negative itemsets. Suppose {A,B} is a frequent itemset and C is a frequent item. {A,B,C} is of interest
even if it is a 3-item infrequent itemset. However, if D is an infrequent item, there is no need to
consider {A,B,C,D} because D will not be in either a positive association or a negative association
of interest by our heuristic. D will not be in any positive association by any existing association
analysis method either. Therefore, unlike the downward closure property of the support measure,
our heuristic does not possess a closure property. However, as we will demonstrate in Theorem 1
(Section 3.2), our approach will be able to find both frequent and infrequent itemsets that meet our
heuristic.
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where

iipis(X , Y ) = X ∩ Y = ∅ ∧
g (X , ¬Y , ms, mc, mi) = 2 (5)

g (X , ¬Y , ms, mc, mi) = f (X , ¬Y , ms, mc, mi)

+ supp(X ) + supp(Y ) − 2ms + 1
|supp(X ) − ms| + |supp(Y ) − ms| + 1

where g () is a constraint function concerning f () and the support, confidence,
and interestingness of X ⇒ Y .

Note that, we can also define infrequent itemsets of potential interest for
rules of the forms of ¬X ⇒ Y and ¬X ⇒ ¬Y accordingly. This article uses only
the form of X ⇒ ¬Y to represent and describe negative rules for convenience.

Using the fipi and iipi mechanisms for both positive and negative rule discov-
ery, our search is constrained to seeking interesting rules on certain measures,
and pruning is the removal of all uninteresting branches that cannot lead to
an interesting rule that would satisfy those constraints.

3.2 Searching for Frequent and Infrequent Itemsets of Interest

Many frequent itemsets relate to positive rules that are not of interest, and
many infrequent itemsets relate to negative rules that are not of interest.
The search space can be significantly reduced if the extracted itemsets are
restricted to frequent and infrequent itemsets of potential interest. For this
reason, we now construct an efficient algorithm for finding frequent item-
sets of potential interest and infrequent itemsets of potential interest in a
database.

PROCEDURE 1. AllItemsetsOfInterest
Input: D: a database; ms: minimum support; mc: minimum confidence; mi:

minimum interestingness;
Output: PL: set of frequent itemsets of interest; NL: set of infrequent itemsets

of interest;

(1) let PL ← ∅; NL ← ∅;
(2) let L1 ← {frequent 1-itemsets}; PL ← PL ∪ L1;
(3) for (k = 2; (Lk−1 �= ∅); k + +) do

begin //Generate all possible frequent and infrequent k-itemsets of interest
in D.
(3.1) let Temk ← {{x1, . . . , xk−2, xk−1, xk} | {x1, . . . , xk−2, xk−1} ∈ Lk−1 ∧

{x1, . . . xk−2, xk} ∈ Lk−1};
(3.2) for each transaction t in D do

begin
//Check which k-itemsets are included in transaction t.

let Temt ← the k-itemsets in t that are also contained in Temk ;
for each itemset A in Temt do

let A.count ← A.count + 1;
end
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(3.3) let Lk ← {c|c ∈ Temk ∧ (supp(c) = (c.count/|D|) >= ms)};
let Nk ← Temk − Lk ;

(3.4) //Prune all uninteresting k-itemsets in Lk
for each itemset i in Lk do

if NOT(fipi(I )) then
let Lk ← Lk − {I};

let PL ← PL ∪ Lk ;
(3.5) //Prune all uninteresting k-itemsets in Nk

for each itemset J in Nk do
if NOT(iipi(J )) then

let Nk ← Nk − {J};
let NL ← NL ∪ Nk ;

end
(4) output PL and NL;
(5) return.

The AllItemsetsOfInterest procedure generates all frequent and infrequent
itemsets of interest in a given database D, where PL is the set of all frequent
itemsets of interest in D, and NL is the set of all infrequent itemsets of inter-
est in D. PL and NL contain only frequent and infrequent itemsets of interest
respectively.

The initialization is done in Step (1). Step (2) generates L1 of all frequent
1-itemsets in database D in the first pass of D.

Step (3) generates Lk and Nk for k ≥ 2 by a loop, where Lk is the set of
all frequent k-itemsets of interest in the kth pass of D, Nk is the set of all
infrequent k-itemsets of interest, and the end-condition of the loop is Lk−1 = ∅.
For each pass of the database in Step (3), say pass k, there are five substeps as
follows.

Step (3.1) generates Temk of all k-itemsets in D, where each k-itemset in
Temk is generated by two frequent itemsets in Lk−1. Each itemset in Temk
is counted in D by a loop in Step (3.2). Then Lk and Nk are generated
in Step (3.3). Lk is the set of all potentially useful frequent k-itemsets in
Temk , where all frequent k-itemsets in Lk meet ms. Nk is the set of all in-
frequent k-itemsets in Temk , whose supports do not meet ms, and Nk =
Temk − Lk . And Nk is the set of all potentially useful infrequent k-itemsets in
Temk .

Steps (3.4) and (3.5) select all frequent and infrequent k-itemsets of inter-
est respectively. In Step (3.4), if an itemset I in Lk does not satisfy fipi(I ),
then I is an uninteresting frequent itemset, and is removed from Lk . Af-
ter all uninteresting frequent itemsets are removed from Lk , Lk is merged
into PL. In Step (3.5), if an itemset J in Nk does not satisfy iipi(J ), then
J is an uninteresting infrequent itemset, and is removed from Nk . After
all uninteresting frequent itemsets are removed from Nk , Nk is merged into
NL.

Step (4) outputs the frequent and infrequent itemsets of potential interest
in PL and NL. The procedure ends in Step (5).
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Table I. A Transaction Database TD

Transaction ID Items
T1 A, B, D
T2 A, B, C, D
T3 B, D,
T4 B, C, D, E
T5 A, E,
T6 B, D, F,
T7 A, E, F,
T8 C, F,
T9 B, C, F
T10 A, B, C, D, F

We have a theorem for the above algorithm as follows.

THEOREM 1. Algorithm AllItemsetsOfInterest works correctly.

PROOF. Clearly, because this algorithm is Apriori-like, AllItemsetsOfInterest
can generate all frequent itemsets that satisfy our constraints for interesting
frequent itemsets. We need to show that all interesting infrequent itemsets are
also identified.

For any itemset c in Temk in Step (3.3), if supp(c) < ms, c is appended into
Nk . This means that Nk is the set of all possible infrequent k-itemsets in Temk .
Furthermore, all infrequent itemsets of interest in Nk are selected in Step (3.5).
The infrequent itemsets selected from Nk satisfy our constraints for interesting
infrequent itemsets. This means that all interesting infrequent k-itemsets are
identified. Therefore, AllItemsetsOfInterest can generate all infrequent itemsets
that satisfy our constraints for interesting infrequent itemsets.

3.3 An Example

Since the conf measure is constructed in the next section, in order to illustrate
the use of AllItemsetsOfInterest, we temporarily replace the f (X , Y , ms, mc, mi)
constraint with the following f (X , Y , ms, mi),

f (X , Y , ms, mi) = supp(X ∪ Y ) + interest(X , Y ) − (ms + mi) + 1
|supp(X ∪ Y ) − ms| + |interest(X , Y ) − mi| + 1

Example 3. Suppose we have a transaction database TD with 10 trans-
actions in Table I from a grocery store. Let A = bread, B = coffee, C = tea,
D = sugar, E = beer, F = butter, ms = 0.3 and mi = 0.05.

In Table I, there are six 1-itemsets: A, B, C, D, E, and F . When ms = 0.3,
they are all frequent 1-itemsets in PL, which is listed in Table II. L1 = {A, B, C,
D, E, F }.

Tem2 of 2-itemsets from L1 is: {AB, AC, AD, AE, AF, BC, BD, BE, BF, CD,
CE, CF, DE, DF, EF}. When ms = 0.3, L2 = {AB, AD, BC, BD, BF, CD, CF},
and N2 = {AC, AE, AF, BE, CE, DE, DF, EF}.
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Table II. Single Frequent Items in TD

Number of
Item Transactions Support

A 5 0.5
B 7 0.7
C 5 0.5
D 6 0.6
E 3 0.3
F 5 0.5

Table III. Frequent 2-Itemsets of
Interest in PL

Number of
Item Transactions Support
AB 3 0.3
BC 4 0.4
BD 6 0.6
BF 3 0.3
CF 3 0.3

When mi = 0.07, L2 = {AB, BC, BD, BF, CF} is the set of frequent 2-itemsets
of interest to be appended into PL, as listed in Table III. Because

f (A, B, ms, mi) = 0.3 + 0.05 − (0.3 + 0.05) + 1
|0.3 − 0.3| + |0.05 − 0.05| + 1

= 1

f (A, D, ms, mi) = 0.3 + 0 − (0.3 + 0.05) + 1
|0.3 − 0.3| + |0 − 0.05| + 1

< 1

f (B, C, ms, mi) = 0.4 + 0.05 − (0.3 + 0.05) + 1
|0.4 − 0.3| + |0.05 − 0.05| + 1

= 1

f (B, D, ms, mi) = 0.6 + 0.18 − (0.3 + 0.05) + 1
|0.6 − 0.3| + |0.18 − 0.05| + 1

= 1

f (B, F, ms, mi) = 0.3 + 0.05 − (0.3 + 0.05) + 1
|0.3 − 0.3| + |0.05 − 0.05| + 1

= 1

f (C, D, ms, mi) = 0.3 + 0 − (0.3 + 0.05) + 1
|0.3 − 0.3| + |0 − 0.05| + 1

< 1

f (C, F, ms, mi) = 0.3 + 0.05 − (0.3 + 0.05) + 1
|0.3 − 0.3| + |0.05 − 0.05| + 1

= 1

AD and CD are not of interest, and therefore are removed from L2.
Similarly, N2 = {AC, AE, AF, BE, CE, DE, DF, EF} is the set of infrequent

2-itemsets of interest to be appended into in NL, as listed in Table IV.
Tem3 of 3-itemsets, {BCD, BCF, BDF}, is constructed from L2. Therefore,

L3 = {BCD} and N3 = {BCF, BDF}. When mi = 0.07, L3 = {BCD} is the set
of frequent 3-itemsets of interest to be appended into PL, as listed in Tables V
and VI.

Tem4 of 4-itemsets, {}, is constructed from L3. Step (3) now ends. The results
listed in Tables II–VI are output in Step (4).
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Table IV. Infrequent 2-Itemsets of Interest in NL

Number of Number of
Item Transactions Support Item Transactions Support
AC 2 0.2 AE 2 0.2
AF 2 0.2 BE 1 0.1
CE 1 0.1 DE 1 0.1
DF 2 0.2 EF 1 0.1

Table V. Frequent 3-Itemsets of
Interest in PL

Number of
Item Transactions Support
BCD 4 0.4

Table VI. Infrequent 3-Itemsets of Interest
in NL

Number of
Itemset Transactions Support

BCF 2 0.2
BDF 2 0.2

From Tables II–VI, there are 10 frequent k-itemsets (k ≥ 2), and only 6
frequent k-itemsets (k ≥ 2) of interest in PL. There are 28 potentially useful
infrequent k-itemsets (k ≥ 2), and only 10 of them are of interest in NL. Note
that we have not considered the conf measure in the above example, for identi-
fying frequent and infrequent itemsets of interest. Using conf as a constraint,
the generation of association rules will be addressed in the next section.

4. EXTRACTING POSITIVE AND NEGATIVE ASSOCIATION RULES

In this section, we present a definition of four types of association rules based on
Piatetsky-Shapiro’s argument and probability theory, and design an algorithm
for mining both positive and negative association rules of interest in databases.

4.1 Four Types of Association Rules

Recall the relationship between p(Y |X ) and p(Y ) (or supp(Y )) for a possible
rule X ⇒ Y in Section 3.1. Based on Piatetsky-Shapiro’s argument, we can
write the interestingness of an association between X and Y in the form of
their statistical dependence,

Dependence(X , Y ) = p(X ∪ Y )
p(X )p(Y )

= p(Y |X )
p(Y )

.

Consider the relationship between p(Y |X ) and p(Y ), Dependence(X , Y ) has
the following three possible cases.

(1) If Dependence(X , Y ) = 1 or p(Y |X ) = p(Y ), then Y and X are independent.
(2) If Dependence(X , Y ) > 1 or p(Y |X ) > p(Y ), then Y is positively dependent

on X , and the following holds,
0 < p(Y |X ) − p(Y ) ≤ 1 − p(Y ).
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In particular, we have

0 <
p(Y |X ) − p(Y )

1 − p(Y )
≤ 1 (6)

The bigger the ratio (p(Y |X ) − p(Y ))/(1 − p(Y )), the higher the positive
dependence.

(3) If Dependence(X , Y ) < 1 or p(Y |X ) < p(Y ), then Y is negatively dependent
on X (or ¬Y is positively dependent on X ), and the following holds,

0 > p(Y |X ) − p(Y ) ≥ −p(Y ).
In particular, we have

0 <
p(Y |X ) − p(Y )

−p(Y )
≤ 1 (7)

The bigger the ratio (p(Y |X ) − p(Y ))/(−p(Y )), the higher the negative
dependence.

In the first case, the rule X ⇒ Y and possible negative rules between X and
Y are not of interest because X and Y are independent. A small neighborhood
of 1, that is, |p(Y |X )− p(Y )| < mi, would also indicate that X ⇒ Y and possible
negative rules between X and Y are not of interest either.

The second case has been widely explored in association analysis for positive
rules, which indicates that the rule X ⇒ Y may be an association rule of
interest. The last case has received little attention. In this case, because Y is
negatively dependent on X , X ⇒ ¬Y may be a negative association rule of
interest.

Putting Inequalities (6) and (7) together, we can get a conditional-probability
increment ratio function for a pair of itemsets X and Y , denoted by CPIR as
follows.

CPIR(Y |X ) =
⎧⎨
⎩

p(Y |X ) − p(Y )
1−p(Y ) , if p(Y |X ) ≥ p(Y ), p(Y ) �= 1

p(Y |X ) − p(Y )
p(Y ) , if p(Y ) > p(Y |X ), p(Y ) �= 0

(8)

This is the same as the certainty factor model in Shortliffe [1976].
To discover and measure both positive and negative association rules, we can

take CPIR(Y |X ) as the confidence of the association rule between itemsets X
and Y . Clearly, confidence(X ⇒ Y ) has several special cases as follows:

—If p(Y |X ) = p(Y ), Y and X are independent in probability theory. The con-
fidence of the association rule X ⇒ Y would become

confidence(X ⇒ Y ) = CPIR(Y |X ) = 0
—If p(Y |X ) − p(Y ) > 0, Y is positively dependent on X . When p(Y |X ) = 1

which is the strongest possible condition, the confidence of the association
rule X ⇒ Y would be assigned as

confidence(X ⇒ Y ) = CPIR(Y |X ) = 1
—When p(Y |X ) = 0, Y is negatively dependent on X , and the confidence of

the association rule X ⇒ ¬Y would be assigned as
confidence(X ⇒ ¬Y ) = CPIR(Y |X ) = −1
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Because p(¬A) = 1 − p(A), for Equation (8), we can take the first half of the
definition of CPIR(Y |X ),

CPIR(Y |X ) = p(Y |X ) − p(Y )
1 − p(Y )

or

CPIR(Y |X ) = supp(X ∪ Y ) − supp(X )supp(Y )
supp(X )(1 − supp(Y ))

(9)

as a metric for the confidence measure, conf, of the rule X ⇒ Y in the following
discussion when supp(X ∪ Y ) ≥ supp(X )supp(Y ) and supp(X )(1 − supp(Y )) �=
0, where supp(Y |X ) in the certainty factor model is replaced with supp(X ∪
Y )/supp(X ) for the convenience of mining association rules. We now present a
definition for association rules of interest by this metric.

Definition 1. Let I be the set of items in a database D, i = A∪ B ⊆ I be an
itemset, A ∩ B = ∅, supp(A) �= 0, supp(B) �= 0, and ms, mc and mi > 0 be given
by the user. Then,

(1) If supp(A∪B) ≥ ms, interest(A, B) ≥ mi, and CPIR(B|A) ≥ mc, then A ⇒ B
is a positive rule of interest.

(2) If supp(A ∪ ¬B) ≥ ms, supp(A) ≥ ms, supp(B) ≥ ms, interest(A, ¬B) ≥ mi,
and CPIR(¬B|A) ≥ mc, then A ⇒ ¬B is a negative rule of interest.

(3) If supp(¬A ∪ B) ≥ ms, supp(A) ≥ ms, supp(B) ≥ ms, interest(¬A, B) ≥ mi,
and CPIR(B|¬A) ≥ mc, then ¬A ⇒ B is a negative rule of interest.

(4) If supp(¬A ∪ ¬B) ≥ ms, supp(A) ≥ ms, supp(B) ≥ ms, interest(¬A, ¬B)
≥ mi, and CPIR(¬B|¬A) ≥ mc, then ¬A ⇒ ¬B is a negative rule of interest.

This definition gives four types of valid association rules of interest. Case 1
defines positive association rules of interest. Three types of negative associa-
tion rules are dealt with in Case 2, Case 3, and Case 4. In the above definition,
supp(∗) ≥ ms guarantees that an association rule describes the relationship
between two frequent itemsets; the mi requirement makes sure that the asso-
ciation rule is of interest; and CPIR(∗) ≥ mc specifies the confidence constraint.

We now demonstrate the use of the CPIR measure for identifying association
rules from PL and NL in Example 3. Let ms = 0.3, mc = 0.5, and mi = 0.05.

Example 4. For itemset B ∪ D in PL,

CPIR(D|B) = supp(D ∪ B) − supp(B)supp(D)
supp(B)(1 − supp(D))

= 0.6 − 0.7 ∗ 0.6
0.7 ∗ (1 − 0.6)

= 0.643

And

f (B, D, ms, mi) = 0.6 + 0.643 + 0.18 − (0.3 + 0.5 + 0.05) + 1
|0.6 − 0.3| + |0.643 − 0.5| + |0.18 − 0.05| + 1

= 1

According to the definition of interesting positive rules and Equations (2)
and (3) in Section 3.1, B ⇒ D can be extracted as a valid positive rule of
interest.
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Example 5. For itemset B ∪ E in NL, supp(B) = 0.7, supp(E) = 0.3,
supp(¬E) = 0.7, supp(B ∪ ¬E) = 0.6, and

CPIR(¬E|B) = supp(B ∪ ¬E) − supp(B)supp(¬E)
supp(B)(1 − supp(¬E))

= 0.6 − 0.7 ∗ 0.7
0.7 ∗ (1 − 0.7)

= 0.524

Also,

f (B, ¬E, ms, mc, mi) = 0.6 + 0.524 + 0.11 − (0.3 + 0.5 + 0.05) + 1
|0.6 − 0.3| + |0.524 − 0.5| + |0.11 − 0.05| + 1

= 1
g (B, ¬E, ms, mc, mi) = f (B, ¬E, ms, mc, mi)

+ supp(B) + supp(E) − 2ms + 1
|supp(B) − ms| + |supp(E) − ms| + 1

= 1 + 0.7 + 0.3 − 2 ∗ 0.3 + 1
|0.7 − 0.3| + |0.3 − 0.3| + 1

= 2

According to Equations (4) and (5) in Section 3.1, B ⇒ ¬E can be extracted
as a valid negative rule of interest.

4.2 Algorithm Design

Mining both positive and negative association rules of interest can be decom-
posed into the following two subproblems, in a similar way to mining positive
rules only.

(1) Generate the set PL of frequent itemsets and the set NL of infrequent
itemsets.

(2) Extract positive rules of the form A ⇒ B in PL, and negative rules of the
forms A ⇒ ¬B, ¬A ⇒ B, and ¬A ⇒ ¬B in NL.

Let D be a database, and ms, mc, and mi given by the user. Our algorithm
for extracting both positive and negative association rules with the probability
ratio model for confidence checking is designed as follows:

Algorithm 1. PositiveAndNegativeAssociations
Input: D: a database; ms, mc, mi: threshold values;
Output: association rules;

(1) call procedure AllItemsetsOfInterest;
(2) // Generate positive association rules in PL.

for each frequent itemset A in PL do
for each expression X ∪ Y = A and X ∩ Y = ∅ do

begin
if fipis(X , Y ) then

if CPIR(Y |X ) ≥ mc then
output the rule X ⇒ Y

with confidence CPIR(Y |X ) and support supp(A);
if CPIR(X |Y ) ≥ mc then

output the rule Y ⇒ X
with confidence CPIR(X |Y ) and support supp(A);

end;
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(3) // Generate all negative association rules in NL.
for each itemset A in NL do
for each expression X ∪ Y = A and X ∩ Y = ∅ do

if iipis(X , Y ) then
begin

if CPIR(Y |¬X ) ≥ mc then
output the rule ¬X ⇒ Y

with confidence CPIR(Y |¬X ) and support supp(¬X |Y );
if CPIR(¬X |Y )| ≥ mc then

output the rule Y ⇒ ¬X
with confidence CPIR(¬X |Y ) and support supp(Y ∪ ¬X );

if CPIR(¬Y |X )| ≥ mc then
output the rule X ⇒ ¬Y

with confidence CPIR(¬Y |X ) and support supp(X |¬Y );
if CPIR(X |¬Y )| ≥ mc then

output the rule ¬Y ⇒ X
with confidence CPIR(X |¬Y ) and support supp(¬Y ∪ X );

if CPIR(¬Y |¬X )| ≥ mc then
output the rule ¬X ⇒ ¬Y

with confidence CPIR(¬Y |¬X ) and support supp(¬X |¬Y );
if CPIR(¬X |¬Y )| ≥ mc then

output the rule ¬Y ⇒ ¬X
with confidence CPIR(¬X |¬Y ) and support supp(¬Y ∪ ¬X );

end;
(4) return.

PositiveAndNegativeAssociations generates not only all positive association
rules in PL, but also negative association rules in NL. Step (1) calls procedure
AllItemsetsOfInterest to generate the sets PL and NL with frequent and infre-
quent itemsets of interest respectively, in the database D.

Step (2) generates positive association rules of interest for an expression
X ∪ Y of A in PL if fipis(X , Y ). If CPIR(Y |X ) ≥ mc, X ⇒ Y is extracted as
a valid rule of interest, with confidence CPIR(Y |X ) and support supp(X ∪ Y ).
If CPIR(X |Y ) ≥ mc, Y ⇒ X is extracted as a valid rule of interest, with
confidence CPIR(X |Y ) and support supp(X ∪ Y ).

Step (3) generates negative association rules of interest for an expression
X ∪ Y of A in NL if iipis(X , Y ). If CPIR(Y |¬X ) ≥ mc, ¬X ⇒ Y is extracted as
a valid rule of interest. If CPIR(¬X |Y ) ≥ mc, Y ⇒ ¬X is extracted as a valid
rule of interest. If CPIR(¬Y |X ) ≥ mc, X ⇒ ¬Y is extracted as a valid rule of
interest. If CPIR(X |¬Y ) ≥ mc, ¬Y ⇒ X is extracted as a valid rule of interest.
If CPIR(¬Y |¬X ) ≥ mc, ¬X ⇒ ¬Y is extracted as a valid rule of interest. If
CPIR(¬X |¬Y ) ≥ mc, ¬Y ⇒ ¬X is extracted as a valid rule of interest.

5. RELATED WORK

There have been many research efforts reported in the literature to efficiently
discover association rules, such as strongly collective itemsets [Aggarawal and
Yu 1998], the chi-squared test model [Brin et al. 1997; Srikant and Agrawal
1997] and the share-based measure [Carter et al. 1997]. We review related
work in this section.

In Piatetsky-Shapiro[1991] proposed that rules over a relation are of the
form C1 ⇒ C2, where C1 and C2 are conditions on tuples of the relation. Such
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a rule may be exact, meaning that all tuples that satisfy C1 also satisfy C2;
may be strong, meaning that tuples satisfying C1 almost always satisfy C2; or
may be approximate, meaning that some of the tuples satisfying C1 also satisfy
C2. One important result in that paper is: a rule X ⇒ Y is not interesting if
support(X ⇒ Y ) ≈ support(X )×support(Y ). This result has been widely taken
as a major critique for mining association rules of interest, and we have adopted
it in our AllItemsetsOfInterest procedure.

The most popular model for mining association rules is the support-
confidence framework first proposed by Agrawal, Imielinski, and Swami
[Agrawal et al. 1993b]. Generally speaking, an association rule is expected
to capture a certain type of dependence among items in a database. Brin,
Motwani and Silverstein [Brin et al. 1997] made the suggestion to measure
the significance of association rules via a chi-squared test for correlations from
classical statistics. The chi-squared test is useful because it not only captures
correlations, but can also be used to detect negative implications.

Srikant and Agrawal [1997] applied the chi-square values to check whether
association rules are statistically significant for implementing Piatetsky-
Shapiro’s argument.

Although the models based on the chi-square test are efficient, there are
many limitations in these models, such as (1) the chi-square value for itemsets
X and Y can only determine whether X and Y are independent or not; and (2)
if the correlation is negative, it must apply other methods to determine which
of X ⇒ ¬Y , ¬X ⇒ Y , and ¬X ⇒ ¬Y can be extracted as a valid rule and, to
compute the support, confidence, and interest for such a rule.

Another measurement of interestingness is Aggarawal and Yu’s [1998]
strongly collective itemset model for evaluating and finding itemsets for min-
ing association rules. The collective strength C(I ) of an itemset I is defined as
follows:

C(I ) = 1 − v(I )
1 − E[v(I )]

E[v(I )]
v(I )

where v(I ) is the violation rate of I . This model doesn’t consider Piatetsky-
Shapiro’s argument and, supp and conf must be redone when we discover as-
sociation rules with infrequent itemsets.

The above models all concentrate on mining positive association rules. The
chi-square test based algorithms mentioned negative relationships between
two frequent itemsets, but have not addressed how to mine negative associ-
ation rules. As we have demonstrated in the previous sections, mining nega-
tive association rules is different from discovering positive association rules in
databases, and identifying negative associations raises new problems such as
dealing with infrequent itemsets of interest and the amount of involved itemsets
in databases. Therefore, exploring specific and efficient mining models is nec-
essary to discover both positive and negative association rules in databases.

Recently, unexpected patterns [Padmanabhan and Tuzhilin 1998, 2000] and
exceptional patterns [Hussain et al. 2000; Hwang et al. 1999; Liu et al. 1999;
Suzuki 1997; Suzuki and Shimura 1996] have been investigated extensively.
The unexpected patterns and exceptional patterns are referred to as exceptions
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of rules, also known as surprising patterns. An exception is defined as a devia-
tional pattern to a well-known fact, and exhibits unexpectedness. If it involves
negative terms, it can be treated as a special case of negative rules.

[Savasere et al. 1998] addresses the issue of negative rule mining, called
strong negative association mining. Previously discovered positive associations
are combined with domain knowledge in the form of a taxonomy for mining as-
sociation rules. This model is knowledge-dependent, and can discover negative
associations of the form A �⇒ B. However, it is not clear in this model which
one of A ⇒ ¬B, ¬A ⇒ B, and ¬A ⇒ ¬B is the actual relationship between A
and B. Obviously, this rule cannot be used in an automated reasoning system.
Our model in this paper is different from the strong negative association min-
ing model. First, our model does not require domain knowledge. Second, our
negative association rules are given in more concrete expressions to indicate
actual relationships between different itemsets. Third and most importantly,
we have designed a general framework for mining both positive and negative
association rules at the same time.

The most relevant research work on mining negative associations is indirect
associations [Tan and Kumar 2002; Tan et al. 2000]. An itempair {a, b} is indi-
rectly associated via an itemset (called a mediator) Y if the following conditions
hold:

(1) sup(a, b) < minsupp (Itempair Support Condition), and
(2) There exists a non-empty itemset Y such that ∀ yi ∈ Y :

(a) sup(a, yi) ≥ minsupp, sup(b, yi) ≥ minsupp (Mediator Support Condi-
tion).

(b) d (a, yi) ≥ td , d (b, yi) ≥ td where d (p, q) is a measure of the dependence
between p and q (Dependence Condition) [Tan and Kumar 2002].

As in negative associations, an indirect association between an itempair
{a, b} also requires that {a, b} is an infrequent itemset (the Itempair Support
Condition). The most significant difference between negative associations and
indirect associations is that a mediator is central to the concept of indirect
associations. It is assumed that [Tan and Kumar 2002] a lattice of frequent
itemsets, FI, has been generated using an existing algorithm such as Apriori.
During each pass of candidate generation, it will find all frequent itemsets,
yi ⊆ I − {a, b}, such that both {a} ∪ yi ∈ FI and {b} ∪ yi ∈ FI. Also, an indirect
association deals with an itempair only, and a negative association rule indi-
cates an association between two itemsets, each of which is not limited to one
item only. Therefore, an indirect association can be treated as a special case for
a negative association.

6. EXPERIMENTAL RESULTS

To study the effectiveness of our model, we have performed several experi-
ments. For the first two sets of experiments, our server is Oracle 8.0.3, and
the software was implemented on Sun Sparc using Java. JDBC API was
used as the interface between our program and Oracle. For the last set of
experiments, we used C++ on a Dell Workstation PWS650 with 2G of CPU and
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Table VII. Synthetic Database Characteristics

Database Name |R| T I |r|
T5.I4 940 5 4 96953

T10.I4 987 10 4 98376
T20.I6 976 20 6 99997

2GB memory. To simplify our experiments, we only use negative association
rules of the forms Itemset ⇒ ¬Item and ¬Itemset ⇒ Item.

6.1 Effectiveness and Efficiency for Supermarket Basket Data

For the convenience of comparison, the first type of databases used in our ex-
periments is supermarket basket data from the Synthetic Classification Data
Sets on the Internet (http://www.kdnuggets.com/). The main properties of the
databases are as follows. The total number of attributes, R, is approximately
1000, the average number T of attributes per row is 5, 10, and 20 respectively.
The number |r| of rows is approximately 100000. The average size I of maximal
frequent sets is 2, 4, and 6 respectively. Table VII summarizes these parameters.

To evaluate the effectiveness, we compare our proposed approach with the
support-confidence framework proposed in [Agrawal et al. 1993b] on discov-
ering positive association rules. When mining positive association rules of in-
terest, a rule X ⇒ Y is of interest if and only if it satisfies four conditions:
(1) X ∩ Y = ∅; (2) supp(X ∪ Y ) ≥ ms; (3) |supp(X ∪ Y ) − supp(X )supp(Y )| ≥
mi; (4) supp(X ∪ Y )/supp(X ) ≥ mc. Condition (3) is not required in the
support-confidence framework, but for comparison purposes, it was added into
the support-confidence framework in our experiments. Also, the domain of
CPIR(Y |X ) is [−1, 1]. In our experiments, we have transformed it into interval
[0, 1] by using confidence(Y |X ) = (|CPIR(Y |X )| + 1)/2. From the experimen-
tal results, the interesting positive association rules in the two models are
identical.

To assess the efficiency of our proposed approach, we use two algorithms to
generate all (frequent and infrequent) itemsets of interest. The first algorithm
is Apriori-like, which also generates infrequent itemsets (A ∪ B) that satisfy
conditions: (1) A∩B = ∅; (2) supp(A) ≥ ms and supp(B) ≥ ms; (3) supp(A∪¬B) ≥
ms (or supp(¬A ∪ B) ≥ ms, or supp(¬A ∪ ¬B) ≥ ms). This algorithm does
not have any specific pruning facility, and we denote it by MNP (Mining with
No-Pruning). The other algorithm is our AllItemsetsOfInterest procedure with
a pruning strategy. We denote our AllItemsetsOfInterest procedure by MBP
(Mining By Pruning).

Table VIII shows the running time of MNP and MBP in seconds in generating
frequent itemsets.

Figures 1 and 2 illustrate the running time results of the two algorithms.
Another experiment was performed on the databases with the number

of transactions ranging from 104 to 106, R = 2000, T = 25, and I = 8 to
compare the performance of MNP and MBP. The experimental results are
given in Table IX. Figure 3 depicts the experimental results, from which we
can conclude that MBP achieves much better performance while the number
of transactions is getting larger.
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Table VIII. Running Time (Seconds) (0.001 and 0.0015
are two ms values)

MBP MBP MNP MNP
Database Name 0.0015 0.001 0.0015 0.001

T5.I2.D100K 121 238 725 1987
T10.I4.D100K 388 651 2171 4278
T20.I6.D100K 759 1094 4582 7639

Fig. 1. The comparison of MBP and MNP when ms = 0.0015.

Fig. 2. The comparison of MBP and MNP when ms = 0.001.

6.2 Effectiveness and Efficiency of Relational Databases

One of the second type of databases used in our experiments has the following
conceptual scheme, which is taken from our relational databases,

Report(sno, test, grade, area)

where sno is the primary key for student numbers, test is an attribute about
examinations of subjects, grade is an attribute about students’ grades with
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Table IX. Running Time on Databases (ms = 0.0015)

Number of
Transactions MBP (seconds) MNP (seconds)

10000 11.59 94.06
50000 27.48 363.37

100000 56.55 726.35
500000 221.45 3620.32
600000 268.52 4350.03
700000 312.47 5076.21
800000 357.43 5784.04
900000 402.38 6571.14

1000000 447.06 7295.31

Fig. 3. Performance evaluation of MBP and MNP.

(A, B, C, D, E) as its domain, area is an attribute about students’ nationality
with a domain (China, Singapore, . . .). In order to illustrate the efficiency of our
approximate rule model, we list partially the experimental results, which are
the large itemsets and their supports.

We have evaluated the two methods, MBP and MNP, which are described in
Section 6.1. Let ms = 0.2 and mc = 0.6. Some results are listed in Table X.

As shown in Table X, the interesting itemsets in the two models are identi-
cal. This shows that our model is effective. We also note that the running time
of MNP is 821.23 seconds, and the time for MBP is 58.60 seconds. The signifi-
cant reduction is clearly due to the pruning strategy, making MBP a promising
approach for mining both positive and negative association rules.

Referring to Table X, some of the rules of interest are area = China ⇒
grade = B, and area = China ⇒ ¬grade = C.

Due to the probability significance and the constraint condition of minsupp,
some rules such as area = China ⇒ ¬grade = D, area = Singapore ⇒ ¬grade =
D, area = China ⇒ ¬grade = E and area = Singapore ⇒ ¬grade = E, can’t
be extracted as negative rules of interest in our model. In some context, these
rules are useful for applications though D and E are infrequent items.

6.3 Effectiveness and Efficiency of Relational Databases

The last type of databases in our experiments is the Aggregated Test Data sets
that have been used for KDD Cup 2000 Data and Questions, downloaded from
http://www.ecn.purdue.edu/KDDCUP/. We implemented our approach in C++
on Dell Workstation PWS650 with 2G of CPU and 2GB memory.

The selected databases are as follows:
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Table X. Some Itemsets in the Original Database

Model Useful Itemset Support Size of Database Running Time
China 0.37

Singapore 0.50
B 0.332
C 0.421

MNP China, B 0.278 100000 821.23
Singapore, C 0.35

China, Singapore 0
China, C 0.31

B, C 0
China 0.37

Singapore 0.50
B 0.332
C 0.421

MBP China, B 0.278 100000 58.60
Singapore, C 0.35

China, Singapore 0
China, C 0.31

B, C 0

Table XI. Characteristics of the Aggregated Test Data Sets

DB1 DB2 DB3

Items/Transaction 155 111 117
Transaction Number 1781 50558 62913

DB1 : Question 3 Aggregated Test Data
DB2 : Question 1 Aggregated Test Data
DB3 : Question 2 Aggregated Test Data

Table XI outlines these databases.
We have evaluated the efficiency of MNP and MBP using DB1, DB2 and DB3,

and the experimental results are given in Table XII.
To examine the efficiency of the pruning strategy on the support, confidence

and interestingness constraints, we have run DB3 with different minimum
interestingnesses. When ms = 0.05 and mc = 0.4, the experimental results are
given in Table XIII.

Where ‘pii’ stands for positive itemsets of interest and ‘nii’ stands for negative
itemsets of interest.

Figures 4, 5 and 6 illustrate the above results.
Table XII has demonstrated that our MBP strategy is more efficient than the

Apriori-like MNP, and Table XIII has shown that the support, confidence and
interestingness constraints can further improve the search efficiency.

6.4 Analysis

The results from our proposed approach for mining both positive and negative
association rules of interest are promising. First, as shown in Sections 6.1 and
6.2, the positive association rules mined by the proposed model are identical to
that by the support-confidence framework proposed in [Agrawal et al. 1993b]
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Table XII. Efficiency of MNP and MBP on DB1, DB2 and DB3

DB1 DB2 DB3

ms 0.1 0.05 0.05
mc 0.4 0.4 0.4
mi 0.05 0.01 0.01

MNP Running Time (s) 88.54 212.92 198.52
MBP Running Time (s) 11.11 23.48 25.48

Table XIII. Efficiency of the Pruning Strategy

mi Number of pii Number of nii Running Time (s)

0.01 6807 7382 25.50
0.02 2935 1112 19.02
0.03 1319 225 16.16
0.04 551 72 13.67

Fig. 4. The change of positive itemsets of interest with different minimum interestingnesses.

Fig. 5. The change of negative itemsets of interest with different minimum interestingnesses.

Fig. 6. Running time with different minimum interestingnesses.
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when the condition |supp(X ∪ Y ) − supp(X )supp(Y )| ≥ mi is added into the
support-confidence framework in our experiments. However, our proposed ap-
proach can also discover negative association rules.

Identifying frequent itemsets is a procedure for searching an exponen-
tial space that consists of all possible combinations of items and itemsets in
a given database. This is necessary because the items are irregularly com-
bined in the transactions of a database, and the considered itemsets in the
database are apparently of an exponential amount. In particular, when infre-
quent itemsets are also considered for identifying negative association rules,
we need to search the entire itemset space. For example, in the database
T5.I2.D100K (see Section 6.1), there are 1000 distinct attributes (items). There
are then 21000 possible itemsets occurring in the database T5.I2.D100K. Clearly
it is impossible to explore such a search space using the support-confidence
model.

We have designed a pruning strategy (see Section 3.1) to efficiently reduce
the search space. Further efficiency is gained by our interestingness measure,
which allows us to greatly reduce the number of associations that the users
need to consider. For example, as we have argued (in Example 1), a 6-itemset
can generate 110 possible negative rules. This also leads to an exponential
analysis space that consists of all possible negative association rules for a long
itemset. The efficiency of our method has been presented from the experimental
results in Section 6.3 that our proposed approach is more efficient than Apriori-
like algorithms in generating itemsets of interest. From Section 6.3, each of
support, confidence, and interestingness constraints can efficiently reduce the
search space.

Association rule mining has firmly rooted in market data analysis. Nega-
tive association rule mining potentially assists automated prediction of trends
and behaviors. Existing mining techniques and this research have paved a way
to tackle real-world data. However, including our method in this paper, exist-
ing association analysis algorithms have made the assumption that the users
can specify the minimum-support, minimum-confidence and minimum-interest
thresholds. In real-world applications, mining different databases requires dif-
ferent thresholds. This means that the user-specified thresholds are appro-
priate to a database only if the distribution of itemsets in the database are
known. In other words, the specification of suitable thresholds is database-
dependent. We are currently developing database-independent mining
strategies.

7. CONCLUSIONS

Decision making in many applications such as product placement and invest-
ment analysis often involves a number of factors, some of which play beneficial
roles and others play harmful roles. We need to minimize the harmful im-
pacts as well as maximize possible benefits. Negative association rules such as
A ⇒ ¬C are very important in decision making because A ⇒ ¬C can tell us
that C (which may be a harmful factor) rarely occurs when A (which may be an
beneficial factor) occurs.
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In this paper, we have designed a new method for efficiently mining both pos-
itive and negative association rules in databases. Our approach is novel and
different from existing research efforts on association analysis. Some infrequent
itemsets are of interest in our method but not in existing research efforts. We
have designed constraints for reducing the search space, and have used the
increasing degree of the conditional probability relative to the prior probability
to estimate the confidence of positive and negative association rules. Our ex-
perimental results have demonstrated that the proposed approach is effective,
efficient and promising.
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